Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>i</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iii</td>
</tr>
<tr>
<td>List of Plates</td>
<td>iii</td>
</tr>
</tbody>
</table>

Chapters Title Page No.
--- --- ---
1. GENERAL INTRODUCTION AND REVIEW OF LITERATURE 1-15
 1.1. Medicinal Plants
 1.2. Indigenous Health Systems in India
 1.2.1. Indian Systems of Medicine
 1.2.2. Ayurveda
 1.2.3. Siddha
 1.3. Other World Systems
 1.3.1. Unani
 1.3.2. Amchi
 1.3.3. Homeopathy
 1.4. Plants as a source of medicine
 1.5. Herbal Wealth
 1.6. The wild plant resource base of medicinal plants
 1.7. Phytochemicals
 1.8. Chemotaxonomy
 1.9. Molecular Taxonomy
 1.10. The genus *Artemisia* L.
 1.10.1. Geographical Distribution
 1.10.2. Economic importance of the genus *Artemisia*
 1.10.2.1. Importance in medicine
 1.10.2.2. Insecticidal Properties
 1.10.2.3. Other Uses
 1.11. Origin of the research problem
 1.12. Relevance of the present work
 1.13. Objectives
2. MATERIALS AND METHODS - GENERAL

2.1. General Description of the plants selected for the study
 2.1.1. Artemisia nilagirica (C.B.Clarke) Pamp.
 2.1.2. Artemisia japonica Thunb.
 2.1.3. Artemisia sp.

2.2. Collection of plants

2.3. Analysis of essential oils

2.4. Quantitative Estimation of Artemisinin

2.5. DNA Barcoding
 2.5.1. Phylogenetic analysis

2.6. Morpho-anatomical studies

3. ESSENTIAL OILS

3.1. Introduction and Review of literature
 3.1.1. Distribution of important aromatic plant groups
 3.1.2. Secretory structures in plants
 3.1.2.1. Secretory cavities
 3.1.2.2. Secretory cells
 3.1.2.3. Secretory ducts
 3.1.2.4. Epidermal cells
 3.1.3. Extraction of essential oils
 3.1.3.1. Steam distillation
 3.1.3.2. Hydrodistillation
 3.1.3.3. Hydrodiffusion
 3.1.3.4. Enfleurage
 3.1.3.5. Cold pressing
 3.1.3.6. Solvent extraction
 3.1.3.7. Supercritical carbondioxide extraction
 3.1.3.8. Solvent free microwave
 3.1.4. Analysis of essential oils
 3.1.5. Properties of essential oils
 3.1.6. Chemical composition
 3.1.6.1. Terpenes
 3.1.7. Biosynthetic pathways of essential oils
 3.1.7.1. Cytoplasmic Ac-MVA pathway
 3.1.7.2. Plastidic non-MVA pathway
3.1.8. Applications of essential oils
 3.1.8.1. In medicine and industry
 3.1.8.2. In agriculture
 3.1.8.3. Aromatherapy
3.1.9. Applications of essential oil from Artemisia spp.
3.1.10. Importance of chemotaxonomy

3.2. Materials and Methods
 3.2.1. Collection of plant material and isolation of essential oil
 3.2.2. Gas chromatography and Mass spectrometry (GC-MS)
 3.2.3. Identification of essential oil constituents
 3.2.4. Data analysis

3.3. Results and Discussion
 3.3.1. Essential oil composition
 3.3.1.1. Oil composition of A. nilagirica
 3.3.1.2. Oil composition of A. japonica
 3.3.1.3. Oil composition of unidentified Artemisia sp.
 3.3.2. Combinations of seasons in the essential oil of Artemisia spp.
 3.3.3. Principal Component Analysis

4. ARTEMISININ

4.1. Introduction and Review of Literature
 4.1.1. Discovery of Artemisinin
 4.1.2. Properties of Artemisinin
 4.1.3. Structure of Artemisinin
 4.1.4. Mechanism of action of Artemisinin
 4.1.5. Artemisinin based combination therapy
 4.1.6. Biochemical synthesis of Artemisinin
 4.1.7. Importance of Artemisinin
 4.1.8. Extraction of Artemisinin from plant source

4.2. Materials and Methods
 4.2.1. Collection of plant materials and authentication
 4.2.2. Chemicals and reagents
 4.2.3. Methods
 4.2.4. Preparation of working standards
 4.2.5. Sample preparation
 4.2.6. Preparation of extracts
4.2.7. Prederivatization
4.2.8. HPLC conditions
4.2.9. Data analysis

4.3. Results and Discussion

5. DNA BARCODING

5.1. Introduction and Review of Literature
5.1.1. Chloroplast genome
5.1.1.1. rbcL gene
5.1.1.2. matK gene
5.1.1.3. trnH-psbA intergenic spacer
5.1.2. Nuclear genome
5.1.2.1. Internal transcribed spacer regions of nuclear ribosomal cistron
5.1.3. Barcodes in plants
5.1.4. Phylogenetic analysis to infer relationship with other species
5.1.5. Developments in classification of genus *Artemisia*
5.1.6. Molecular Phylogenetic Studies in the genus *Artemisia*

5.2. Materials and Methods
5.2.1. Collection of plant materials
5.2.2. DNA isolation using GenElute Plant Genomic DNA Miniprep Kit (Sigma)
5.2.3. Agarose Gel Electrophoresis for DNA Quality check
5.2.4. PCR Analysis
5.2.5. PCR amplification profiles
5.2.6. Agarose Gel electrophoresis of PCR products
5.2.7. ExoSAP-IT Treatment
5.2.8. Sequencing using BigDye Terminator v3.1
5.2.9. Post Sequencing PCR Clean up
5.2.10. Sequence Analysis
5.2.11. Sequence Alignment and Analysis

5.3. Results and Discussion
5.3.1. BLAST analysis
5.3.2. Multiple sequence alignment analysis
5.3.3. rbcL dendrogram
5.3.4. matK dendrogram
5.3.5. ITS dendrogram
5.3.6. ITS2 dendrogram
5.3.7. trnH-psbA dendrogram
5.3.8. Dendrogram of combined dataset
5.3.9. Pair wise alignment
5.3.10. Phylogenetic analysis to infer the relationships with other species

6. MORPHO - ANATOMICAL STUDIES

6.1. Introduction and Review of Literature
6.2. Materials and Methods
6.3. Results and Discussion
 6.3.1. Morphological features
 6.3.2. Anatomical features
 6.3.2.1. Transverse Section of Stem
 6.3.2.2. Tranverse Section of Root
 6.3.2.3. Cross Section of Leaf

7. SUMMARY AND CONCLUSION

REFERENCES
PUBLICATIONS
APPENDIX

I-Plagiarism Report
II-rbcL sequences
III-matK sequences
IV-ITS sequences
V-ITS2 sequences
VI-trnH-psbA sequences