Chapter 6
Conclusions

Intergenerational mobility measures the association between the socio-economic attainments of individuals and their children. Low intergenerational mobility implies the persistence of socioeconomic deprivation from one generation to next for poorer sections of society. At the other hand of the scale, for the rich it implies the persistence of socio-economic advantage from one generation to the next. Strong association in socio-economic outcomes between individuals and their offspring is often regarded as an important aspect of lack of equality of opportunity in society.

Since the early 1990s Indian economy has experienced relatively high economic growth rates. This high economic growth was, however, accompanied by an increase in economic inequality and the persistence of caste-based socio-economic inequalities in India. Several studies have documented the increase in inequality of incomes, wages, and wealth over last few decades. Intergenerational economic mobility has been the subject of substantial research in the developed countries. Owing to a lack of adequate data, however, only a few studies have examined intergenerational economic mobility in India.

This thesis consists of four essays on different aspects of intergenerational economic mobility in India. This thesis examined changes in intergenerational occupational mobility among men in India over the last three decades (1983-2012) in India. It also compared changes in intergenerational occupational mobility across different social groups. Further, the thesis examined changes in two variables that are strongly correlated with intergenerational mobility, educational inequality and assortative
marriage. The analysis used nationally representative secondary data and data from village surveys.

Given the lack in India of sources of longitudinal data on the socio-economic attainments (in terms, for example, of occupations or income) of individuals and their children, in this thesis, we have used repeated cross-sectional studies to generate data on co-resident fathers and sons to analyse intergenerational mobility in this thesis. We have used unit-level data from different rounds of Employment and Unemployment Surveys and unit level data from Indian Human Development Survey 2004-05 (surveys conducted, respectively, by the National Sample Survey Office (NSSO) and by the National Council for Applied Economic Research in Association with University of Maryland). We have also used household data from 10 villages located in 6 different agro-ecological regions of six different States of India.

To measure intergenerational occupational mobility we have used transition matrix methods, especially the method proposed by Altham and Ferrie (2007) and Long and Ferrie (2013). These enable us to examine changes in the association between occupations of individuals and their offspring net of the influence of changes in the distribution of occupations over time. Intergenerational correlation was used to examine changes in association between educational attainments of individuals and their offspring over time. Rank correlation measures were used to the analyse association between the educational attainment of married individuals and their spouses over time.
6.1. CHANGES IN INTERGENERATIONAL OCCUPATIONAL MOBILITY IN INDIA, 1983-2012

In chapter 2, we examined changes in intergenerational occupational mobility among males from 1983 to 2012 in India. We also compared changes in intergenerational occupational mobility across different social groups in Chapter 2.

India lacks adequate panel data on individual income, earnings, or occupations. In Chapter 2 we used cross-sectional data from the 38 (1983), 47 (1987-88), 50 (1993-94), 55 (1999-00), 61 (2004-05) and 68 (2011-12) Rounds of the Employment and Unemployment Surveys (EUS) of National Sample Survey Office (NSSO). Following the international literature on social mobility, this thesis measured intergenerational economic mobility in terms of the occupations of individuals. To generate necessary information on individuals and their adult offspring, we separated the data for all currently working co-resident fathers and sons from sample households from each round of the Employment and Unemployment Survey. The current data base in India, however, prevented us from using the same method for women, since the overwhelming majority of married women in India do not live with their parents. Our analysis therefore focuses only on men.

We categorised occupations into four skilled-based categories. These were: 1) white-collar workers; 2) skilled and semi-skilled workers, 3) farmers, and 4) unskilled workers.

In order to measure intergenerational occupational mobility, we used matrix-based mobility measures, and a simple absolute mobility rate. Further, we used the method developed by Altham and Ferrie (2007) to measure relative intergenerational occupational mobility net of changes in occupational distribution over time.
Main findings:

Based on the occupational category to which they belonged, we cross-classified fathers and sons into columns and rows respectively of a mobility table. We first computed a matrix based on a simple measure of absolute mobility, M, or the proportion of sons who entered occupations different from their fathers’ occupations. Our results show that the absolute intergenerational occupational mobility rate at all India level increased from 24.9 per cent in 1983 to 28.9 per cent in 2012. By contrast, when we measured intergenerational absolute mobility rate after adjusting the mobility table in 2012 to have the same occupational distribution as the mobility table of 1983, the adjusted mobility rate, M', declines from 24.9 per cent in 1983 to 22.2 per cent in 2012. In other words, changes in the intergenerational absolute mobility rate between 1983 and 2012 were largely a product of changes in the occupational distribution of fathers and sons over the last three decades.

Given that absolute mobility results are compounded by changes in occupational distribution over time, we measured changes in occupational distribution by using Altham statistics. The Altham statistic, $d(P, Q)=8.8$ shows that the association between the occupations of fathers and the occupations of sons was not identical in 1983 (mobility table P) and in 2012 (mobility table Q). Other Altham statistics, $d(P, J)=30.17$ and $d(Q, J)=32.45$, showed the association between the occupations of father and sons in 1983 (in mobility P) to be closer to perfect mobility observed under independence (in mobility table J) than the corresponding association between Q and J. This implies that the association between the occupations of fathers and sons was higher in 2012 than in 1983. In other words, our results based on Altham statistics show that relative intergenerational occupational mobility declined between 1983 and 2012.
We found that during the study period 1983-2012, absolute mobility rates were slightly lower among men from the Scheduled Castes and Tribes than among non-Scheduled Caste and Tribe men. Further, between 1983 and 2013, the increase in absolute intergenerational occupational mobility for Scheduled Caste and Tribe males was only 1.9 percentage points; the corresponding increase among non-Scheduled Caste and Scheduled Tribe men was 4.8 percentage points.

When we compared the adjusted mobility rate, or M', by imposing the occupational distribution of fathers and sons in the mobility table of 1983 on the mobility table of 2012, we found that the adjusted mobility rate, M', for Scheduled Castes and Scheduled Tribes declined from 25 per cent in 1983 to 20 per cent in 2012 and that the corresponding adjusted mobility rate, M', for non-Scheduled Castes and Scheduled Tribes decline from 24.8 per cent in 1983 to 22.7 per cent in 2012. In other words, the increase in absolute intergenerational mobility rate between 1983 and 2012 was mainly because of changes in the occupational distribution of fathers and sons. However, the decline in mobility between 1983 and 2012 was sharper for Scheduled Castes and Scheduled Tribes men than for non-Scheduled Caste and Scheduled Tribe men. Similarly, results based on Altham statistics showed that the relative intergenerational mobility declined between 1983 and 2012 was sharper for men from the Scheduled Castes and Scheduled Tribes than for men from non-Scheduled Castes and Scheduled Tribes.

Intergenerational immobility was higher in the low-paying occupational categories such as unskilled workers than in other categories, and higher among Scheduled Castes and Scheduled Tribe than among non-Scheduled Castes and Scheduled Tribes. For example, in the 1983, 82.2 per cent of sons of unskilled workers belonging to the
Scheduled Castes and Tribes were unskilled workers, the corresponding figure for the non-Scheduled Castes and Tribes men was 73.4 per cent. If we assume that unskilled work is the least desirable of all occupational categories and white collar work the most desirable of given occupations, then we can consider mobility from white-collar occupations to any other occupation to be downward mobility and moving from unskilled occupations to white-collar occupations as being upward mobility. Sons of Scheduled Caste and Tribe men experienced lower upward mobility and higher downward mobility than the sons of non-Scheduled Caste and Tribe men. For example, in 2012, 21 per cent of sons of Scheduled Caste and Tribe men experienced upward mobility (from unskilled occupation to white collar occupations) the corresponding figure for the other group was 30 per cent. Thirty nine per cent of sons of non-Scheduled Castes and Tribes experienced downward mobility, as compared to 46 per cent for sons of Scheduled Caste and Tribe men.

Throughout the study period, Scheduled Caste and Scheduled Tribe men were concentrated in unskilled occupations relative to non-Scheduled Caste and Scheduled Tribe men. In each survey year, when we imposed the occupational distribution of non-Scheduled Castes and Scheduled Tribes mobility on that year’s Scheduled Caste and Scheduled Tribe mobility table, we found that Scheduled Caste and Scheduled Tribe men experienced higher mobility rates in each year. Similarly, in each survey year, when we impose the occupational distributions of Scheduled Caste and Scheduled Tribe men on that year’s non-Scheduled Castes and Scheduled Tribes mobility table, we found that non-Scheduled Castes and Scheduled Tribes men experienced lower mobility rates in each year. In other words, this hypothetical imposition of occupational distribution confirmed the relative disadvantage inherent in the occupational structure prevalent
among men of the Scheduled Castes and Scheduled Tribes relative to non-Scheduled Caste and Scheduled Tribe men.

In summary, our results on intergenerational occupational mobility between 1983 and 2012 based on evidence from National Sample surveys show that relative mobility declined between 1983 and 2012 and that this decline was sharper among Scheduled Caste and Scheduled Tribe men than among non-Scheduled Caste and Tribe men. In other words, in the period of high economic growth especially during last two decades not only did economic inequality increase across households, but also social fluidity declined slightly. The fall in social mobility in India alongside a rise in inequality is consistent with the negative correlation between inequality and mobility observed in the context of developed countries.

6.2. INTERGENERATIONAL OCCUPATIONAL MOBILITY IN VILLAGES

Given the relatively limited range of employment opportunities within villages, the main vehicle for intergenerational occupational mobility for people in rural India is migration to urban or semi-urban areas. At the same time, since 69 per cent of India’s population still lives in villages, it is important to examine and understand the level of intergenerational occupational mobility within villages themselves. Chapter 3 examined intergenerational occupational mobility among rural males in India using data from household surveys in ten villages in different agro-ecological regions of the country. As occupation is closely linked to caste in rural India, we have also compared mobility between social groups, using a two-fold categorisation of all men: Scheduled Castes and Others. We also examined occupational change across three generations in the study villages.
The data have been generated from detailed village surveys conducted by the Project on Agrarian Relations in India (PARI) of the Foundation for Agrarian Studies (FAS) between 2005 and 2010 in the states of Andhra Pradesh, Telangana, Uttar Pradesh, Maharashtra, Rajasthan, and Karnataka. The mobility matrix approach is applied to father-son pairs. A four-fold occupational classification is used: big farmers, small farmers, skilled workers and persons engaged in business or salaried employment, and lastly, rural manual workers.

The PARI data set used in Chapter 3 to analyse intergenerational mobility has two unique advantages over the sub-sample of pair data on co-resident fathers and sons from the Employment and Unemployment surveys used in Chapter 2. First, it not only allows us to match adult men with their co-residing father's occupational information, but also provides information on occupational details of the fathers of heads of households. In other words, PARI data used in Chapter 3 provides occupational information of the father of almost all adult male members of a household. Further, the PARI data set enabled us to generate three-generational data based on a restricted sample of co-resident sons. Second, a unique feature of the PARI data is that it provides land ownership details of fathers of heads of households. We were able to use a four-fold occupational classification, which, in turn, allowed us to examine mobility within heterogeneous farming classes.

Main Findings

Our results show high occupational stability between the occupations of men and their adult sons in all ten study villages. The absolute intergenerational occupational mobility rate ranged from 43.8 per cent in Bukkacherla (located in the drought-prone Anantapur
district in Andhra Pradesh to 14.8 per cent in 25F Gulabewala (located in the Gang canal region of Sri Ganga Nagar district in Rajasthan). We found that immobility is especially high among both rural manual workers, who are at one end of the occupational distribution, and among the big farmer class. For example, in Mahatwar, a Dalit-majority village in Bijnor district of eastern Uttar Pradesh, 81 per cent of big farmers’ sons and 92 per cent of rural manual workers’ sons remained in the same occupation as their fathers.

In almost all study villages, not only were Scheduled Caste men in both generations more highly concentrated in manual occupations than men of other caste groups, but also occupational immobility was higher among manual workers from the Scheduled Castes than among manual workers from Other Castes. Further, men belonging to the Scheduled Castes experienced higher downward mobility from occupations other than manual labour to manual work than did men from Other Castes. At the same time, men belonging to the Scheduled Castes experienced much lower upward mobility from manual work to other work than did men from Other Castes. To illustrate, in Harevli village in western Uttar Pradesh, downward mobility among Scheduled Caste men was 11 times higher than among men from Other Castes. At the same time, the upward mobility of men from Other Castes was twice as high as among men from Scheduled Castes. These data strongly support the view that Scheduled Caste men who remain in their villages are unable to move out of rural manual work. The few exceptions are villages where skilled work is available in the vicinity (such as Kothapalle in Karimnagar district in Telangana, which is a village located on a major State highway), or where Dalit households can lease in land and become small cultivators (such as in Ananthavaram in Guntur district in Andhra Pradesh).
While the pace of urbanisation in India has risen in the decade after 2001, it is still very low in comparison to other developing countries, including China and countries of East and South-East Asia. A large section of India’s population and work force is therefore going to remain rural for the next few decades. Our observations on occupational mobility underline the urgent need for generating opportunities for skilled employment for the mass of rural manual workers, Dalit workers in particular. Such employment generation is critical to improving the well-being of rural populations.

6.3. EDUCATIONAL INEQUALITY BASED ON FAMILY BACKGROUND

It is well documented that Indian society has historically been marked by extreme forms of socio-economic inequality and educational disparities based on class, caste, and gender. In modern economies, education is an important basis for social stratification. In any society, education can perform a dual role in the social stratification process. On the one hand, higher educational attainment can serve as a means for social mobility for individuals from disadvantaged socio-economic origins. On the other hand, if educational opportunities are unequally distributed among different income strata, such inequality can exacerbate problems of unequal social mobility. Which of these two roles of education predominates in a society depends on the extent to which educational attainment is affected by social origins. In chapter 4, we examined how inequalities in educational opportunity changed during our study period, that is, from 1983 through 2012. In the same chapter, we also examined intergenerational educational mobility in India over the same period of time.

To analyse changes in educational disparities based on socio-economic background of individuals, we have used unit level data from the 38 (1983), 50 (1993-94), 55 (1999-00),
61 (2004-05) and 68 (2011-12) Rounds of the Employment and Unemployment Surveys (EUS) of the National Sample Survey Office (NSSO). In order to analyse changes in intergenerational mobility, we constructed educational data on individuals between the ages of 18 and 45 years, covering men co-residing with their fathers. The data base that we used, as before, was from the National Sample Surveys on employment and unemployment. We have examined intergenerational changes in educational attainment. We conducted multivariate analysis using a probit model to examine such changes. Further, we computed intergenerational educational correlations to analyse changes in intergenerational educational mobility over the reference period (1983-2012).

Main Findings

First, we examined how educational attainment, at the secondary, higher secondary levels and among graduates and above varied over time. We further classified the sample by socio-religious category (caste), consumer expenditure categories, and place of residence category. We also classified our sample of individuals into categories based on educational attainment of their fathers. Our results showed that educational attainment at all three levels of education improved in rural and urban India. At the same time, gaps in education completion rates based on an individual’s place of residence increased between 1983 and 2012 in respect of all three levels of education (secondary, higher secondary and “graduate and above”). For example, among men in the age cohort 18-45 years, 7 per cent of individuals in rural areas and 30 per cent of individuals in urban areas had completed secondary education in 1983. By 2012, in the same age cohort, 28 per cent of individuals in rural areas and 56 per cent of individuals in urban areas had completed secondary education. However, the rural-urban gap in completion rates at the secondary school level increased from 22 percentage points in
1983 to 26 percentage points in 2012. Similarly, when our sample was disaggregated by classes of family income (that is, consumer expenditure), we find substantial disparities in educational achievements, particularly between men belonging to the lowest and highest income quintiles. This phenomenon persisted throughout the study period. For example, among men in the age cohort 20-45 years, the gap in the proportion of men in the lowest and highest income quintiles who had completed higher secondary education increased from 18 percentage points in 1983 to 47 percentage points in 2012. Educational attainment rates also differed substantially with the social group to which individuals belonged. For example, in 2012, among men in the age cohort 22-45 years, 24 per cent of persons in the category “Others” had graduated from university. The corresponding proportion was 6 per cent for individuals from the Scheduled Castes, 5 per cent for individuals from Scheduled Tribes, 7 per cent for Muslim individuals, and 8 per cent for individuals from Other Backward Classes. Disparities between historically deprived social groups (including people of the Scheduled Castes and Tribes and Muslims) and category of “Others” increased over the study period. For example, among persons in the age cohort 22-45 years, the gap in the proportion of people of Scheduled Castes and from the “Others” category graduating from university increased from 13 percentage points in 2000 to 19 percentage points in 2012.

We also classified the educational attainments of men with co-resident fathers on the basis of their father’s educational attainment. The educational attainment of fathers was classified into following categories: (1) not-literate; (2) with 1-8 years of schooling; (3) with 9 to 12 years of schooling; and (4) with university education. Throughout the study period, disparities in educational attainment—at all three levels, that is, secondary, higher secondary and graduate level—between men who had fathers with low educational attainment and men who had highly educated fathers were large. For
example, among men in the age cohort 22-45 years in 1983, 2 per cent of individuals whose fathers were not-literate completed a university degree. The corresponding proportion for individuals whose fathers were graduates was 61 per cent. Similarly, in 2012, among men in the age cohort 22-45 years, while 6 per cent of individuals whose fathers were non-literate completed a university degree, the corresponding proportion for individuals whose fathers were graduates was 75 per cent.

Using our sub-sample of co-resident adult males aged 22-45 years and their fathers we examined changes in intergenerational educational mobility. For this exercise, we used an intergenerational educational correlation measure, ρ, which measures the association between educational attainments of fathers and sons. We found that the intergenerational educational correlation coefficient, ρ, changed from 0.563 in 1983 to 0.564 in 2004-05, and declined slightly to 0.538 in 2012. In other words, we find that intergenerational educational mobility remained unchanged for most of the study period.

We used binomial probit models to examine changes in the influence of individual socio-economic characteristics on educational attainment over time. Results from probit analysis for each survey year between 1983 and 2012 showed that individuals' educational attainment was strongly associated with socio-economic characteristics such as socio-religious group (Scheduled Castes, Scheduled Tribes, Other Backward Classes, Muslims and Others) family income, gender, and place of residence. However, when we introduced father's educational attainment as an explanatory variable in the probit model, we found that the difference in the probability to complete higher secondary and graduate-level education among Other Backward Classes, Scheduled Castes and Tribes, and Muslims men were not statistically significant in most years. However, the
probability of historically marginalised social groups (measured in terms of regression coefficients) to complete an educational at any level was lower than the corresponding probability among “Others”. This difference was statistically significant in every survey year. The probability of completing an educational level was significantly higher among individuals with highly educated fathers than for individuals whose fathers had low educational attainments.

To summarise, our results show that, in general, the impact of socio-economic origin on an individual’s educational attainment at the secondary, higher secondary and graduate levels did not change dramatically between 1983 and 2011-12. This suggests that individuals from advantaged socio-economic backgrounds continued to have better access to educational opportunities as compared to individuals from disadvantaged family backgrounds. Our results, based on intergenerational correlation between the educational attainments of fathers and sons showed that educational mobility largely remained unchanged between 1983 and 2012. It is possible that this could have contributed to the lack of improvement in intergenerational occupational mobility during the study period (1983-2012) in India.

6.4. CHANGES IN EDUCATIONAL ASSORTATIVE MARRIAGE IN INDIA, 1983-2012

Several studies from across the world have shown an increase in the tendency among individuals to marry within their own educational group—that is, in educational assortative marriage—can accelerate economic inequality across households and also reinforce existing inequality from one generation to the next. \(^{49}\) In Chapter 5, we have

examined changes in educational assortative marriage in India over the reference period, 1983-2012. We also analysed variations in educational assortative marriages across different social groups in India.

We have used unit level data from the 38 (1983), 47 (1987-88), 50 (1993-94), 55 (1999-00), 61 (2004-05) and 68 (2011-12) Rounds of Employment and Unemployment Survey (EUS) of National Sample Survey Office. From each round of Employment and Unemployment Survey (EUS), we matched information on each currently married woman in the age cohort 21-50 years with information on her husband and thus generated the information on couples required to analyse educational assortative marriage. We classified the educational attainment of individuals into four categories: (1) below primary; (2) completed primary or middle school; (3) secondary or higher secondary; and (4) completed graduation or above. To examine changes in educational assortative marriage, we used rank correlation measures (such as Kendall's τ and Spearman's ρ). Further, to measure relative educational assortative marriage while controlling for changes in the distribution of educational attainments of men and women over time we used the matrix-based method proposed by Altham and Ferrie (2007).

Main Findings

Our results show that the magnitude of educational assortative marriage increased between 1983 and 2012. For example, Kendall’s τ, representing the association between the educational attainments of wives and husbands, increased from 0.285 in 1983 to 0.442 in 2012. Spearman’s ρ increased from 0.619 in 1983 to 0.684 in 2012. We used another measure of assortative marriage to based on contingency tables, δ, which is a
ratio of the actual homogamy (proportion of women married men with same educational level as their own in total women) in a year to homogamy that would occur under random matching of men and women. The results based on this ratio method (δ_t) were also consistent with the results based on rank correlation measures. In other words, δ_t also shows an increase in educational assortative marriages over the last three decades (δ_t increased from 1.41 in 1983 to 2.03 in 2012).

Results based on Kendall’s τ, and the δ_t ratio show that, in most survey years, the occurrence of educational assortative marriage was lower among social groups such as the Scheduled Tribes, Scheduled Castes and Muslims than the corresponding level of educational assortative marriage among individuals in the social group we have titled “Others”. For example, in 2004-05, Kendall’s τ for Others was 0.423; the corresponding Kendall’s τ was 0.321 for Muslims, 0.389 for Scheduled Tribes and 0.289 for Scheduled Castes. Educational assortative marriage increased for all social groups between 1983 and 2012.

We have used the Altham and Ferrie (2007) method to measure changes in relative educational assortative marriage while controlling for changes in the distribution of educational attainment among women and men. The Altham metrics values for all, $d(P, Q)$ was 11.64, and was statistically significant at the one per cent level. This implies that association between educational attainment of wives and husbands was not identical in contingency table P (in 1983) and contingency table Q (in 2012). Further, another set of Altham metrics, $d(P, J)=43.69$ in 1983 was lower than the corresponding value $d(P, J)=44.70$ in 2012, and both values were statistically significant at the one per cent level. Thus, we conclude that the net association between the educational attainments of women and their husbands in 2012 was higher than in 1983. In other words, the
preference of an individual for marriage with a person of the same educational level as her increased between 1983 and 2012, even after controlling for the influence of changes in the distribution of educational attainment over the reference period. Our analysis of the data using Altham metrics also showed that the association between the educational attainments of spouses increased for all social groups between 1983 and 2012.

Educational homogamy was very high at the lowest and highest educational levels, both in 1983 and in 2012. In 2012, 62 per cent of women in the category “below primary education level” married men in the same category. Similarly, in 2012, 76 per cent of women who were graduates married men who were graduates. This closure at both the ends of the educational hierarchy can reinforce existing socio-economic disparities. In this context, we note that people of the Scheduled Tribes and Castes and Muslims were over represented in the lowest educational category, also showed a higher degree of educational homogamy in the lowest education category than people from the category of “Others”. For example, in 2012, educational homogamy among “Others” in the lowest educational category was 55 per cent; the corresponding figure was 69 per cent among Muslim couples, 67 per cent among Scheduled Tribe couples, and was 63 per cent among Scheduled Caste couples. Given that caste-based endogamy is the norm in Indian society, and that there is an over-representation of Scheduled Tribes and Scheduled Castes at the bottom of the educational hierarchy, higher educational homogamy among Scheduled Tribes and Castes and Muslims can lead to an increase in cross-sectional inequality across social groups.

The increase in educational assortative marriage occurred during a period of increase in economic inequality and the persistence of intergenerational occupational and educational immobility. Research from other countries has shown that an increase in
assortative marriage over time in the marriage market may contribute to income inequality across households in an economy (see Greenwood et al. 2014 and Schwartz 2010). Studies by economists and sociologists on marriage and dowry in India indicate the primacy of wealth and income, in arranged marriages (Rao 1993, Agarwal 1994, Anderson 2003). Rao and Finnoff (2015) argue that marriage in India is an important factor in reinforcing economic inequality. The data show a trend towards educational assortative marriage; establishing a causal relationship between an increase in educational assortative marriage and economic inequality and the persistence of low social mobility is, however, beyond the scope of this thesis.

The findings of this thesis have policy implications for the provision of public education, reservation policy, and employment provision in India. The literature point out that education is one of the most important influences on social mobility. In India, where school education is neither compulsory nor universal, three axes of deprivation – represented by class, gender, and caste (or other social group)– continue to affect access to education. In this context, public policy that provides for free, universal, compulsory formal school education of high quality can and must contribute to the qualitative improvements of the intergenerational socioeconomic mobility in India. The public provisioning and education of employment opportunities in skilled occupations for the victims of historical processes of social exclusion must go together in this effort.

Economic growth in last few decades in India was accompanied by increasing economic inequality and persistence of caste based socio-economic inequality. As discussed earlier, studies from developed countries show that economic inequality has a negative correlation with the level of social mobility (Corak 2013). Thus, socially
desirable forms of socio-economic mobility require different types of policy interventions for resource redistribution.

India needs, for purposes of analysis and policy, large-scale data sets that provide reliable and comparable time series and cross-sectional panel data on social and economic factors of its people, males and females. Agencies such as the National Sample Survey Office must now seriously consider undertaking such household and individual panel data surveys. Data currently available permits only a restricted study of mobility, and do not provide data for the analysis of economic mobility among women. This database constraint is a major limitation of the analysis in this thesis. For the future, panel data must be generated, and with it panel data on, *inter alia*, incomes, employment, and education among women in our country. Only then can future research document and analyse intergenerational socio-economic mobility among women in India. Serial data from panel surveys can also contribute to an improvement in our ability to analyse intergenerational socioeconomic mobility directly, rather than on the basis of subsample of matched pairs of co-resident males in households.

Indian society is characterized by extreme social and economic inequalities and by a high proportion of its population (and therefore vast members of people) in absolute poverty. Economic development is further hindered by non-market forms of discrimination and exclusion, and by historically pre-determined divisions of labour and task allocation. In such a society, upward intergenerational mobility with respect to education, income, employment, less drudgery-based occupations and health is, for the majority of the population, a developmental imperative. Economic and social policy in this sphere requires careful study and analysis of trends in and features of intergenerational mobility. The study of intergenerational mobility in India is still in its
infancy, and further advances in the field await detailed panels data sets. The present study, constrained though it is by the existing sources, is an attempt to contribute to this important field.