CONTENT

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>List of figures</td>
<td>10</td>
</tr>
<tr>
<td>Summary</td>
<td>11</td>
</tr>
</tbody>
</table>

1. Introduction

1.1 Cardiovascular system and the heart 12
1.2 Types of cardiovascular diseases 12
1.3 Myocardial infarction and post MI remodeling 15
1.4 Cardiac proteomics 16

2. Aims and objectives 17

3. Materials and methods 18

3.1 Animals used 18
3.2 Generation of post MI model of study 18
3.2.1 Generation of myocardial infarction *in vivo* by left anterior descending coronary artery (LAD) ligation in adult rat 18
3.2.2 Generation of myocardial infarction in vivo by intra peritoneal injection of Isoproterenol hydrochloride in adult rat 19
3.3 Generation of cardiomyocyte (in vitro) hypoxia- reoxygenation module of study 20
3.4 Determination of cardiac function by echocardiography 22
3.5 Protein extraction 22
3.6 Trypsin digestion and iTRAQ labelling 23
3.7 Two dimensional separation of iTRAQ labelled peptides and MS/MS analysis 24
3.8 Database search and analysis 26
3.9 Western blot analysis 27
3.10 Haematoxylin and eosin staining of cardiac tissue sections 30
3.11 Immunofluorescence study of cardiomyocytes 32
3.12 Filter Trap assay for Desmin aggregates 33
3.13 Calpain1 inhibitor and siRNA treatment of cardiomyocytes 34
3.14 ATP assay 35
3.15 Blue Native PAGE of cardiac tissue homogenate and in-gel activity assay 35
3.16 ROS activity assay 37
3.17 RNA isolation from cardiac tissue 38
3.18 Reverse Transcription 39
3.19 Real time PCR 39
3.20 Statistical Analysis 40

4. Results

4.1 Estimation of ROS in all the experimental groups to determine oxidative stress during MI and post MI remodeling 41
4.2 Evaluation of myocardial structure by haematoxylin and eosin staining 41
4.3 Evaluation of cardiac function during MI and post MI remodeling 41
4.4 Proteomics data and analysis 42
4.5 Proteome profile during MI
 4.5.1 Differential protein expression at 0 day of MI in the infarct region in comparison to control group 43
 4.5.2 Differential protein expression at 0 day of MI in the non-infarct, remote region in comparison to control group 45
4.6 Spatial and temporal protein profile post MI
 4.6.1 Differential protein expression at 30 and 120 days post MI in the damaged region in comparison to 0 day MI, infarct region 46
 4.6.2 Differential protein expression at 30 and 120 days post MI in the non-infarct, remote region 47
4.7 Validation of proteomics data by Western Blot analysis 48
4.8 Desmin aggregation in the damaged region post myocardial infarction 49
4.9 Calpain1 activation causes Desmin cleavage and aggregation during post MI remodeling 49
4.10 Application of Calpain1 inhibitor ALLN and Desmin degradation and aggregation 50
4.11 Measurement of total ATP content in the infarct zone 50
4.12 Measurement of function of mitochondrial respiratory complexes by BN-PAGE and in-gel activity assays 50
4.13 Expression of HSD17B10 (Hydroxysteroid 17-Beta Dehydrogenase 10 protein) 51
4.14 Mitochondrial tRNA levels 51

5. Discussion 52

5.1 Changes in myocardial structure during MI and post MI remodeling 52
5.2 Compromised cardiac function during post MI remodeling 52
5.3 Proteomic profile during myocardial infarction 53
5.4 Proteomic profile during post MI remodeling 54
5.5 Cytoskeletal proteins during post MI remodeling 54
5.5.1 Desmin aggregation during post MI remodeling 55
5.6 Metabolic remodeling of the heart after myocardial infarction 56
5.6.1 Mitochondrial dysfunction leads to energy depletion during late phase post MI remodeling 56

6. Conclusion 58

7. Proteomic data tables
 Table 4 59
 Table 5 67

7. References 72

8. Publications 78