CONTENTS

Chapter 1: Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Nanoparticle and Nanoscience</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Brief History of Nanotechnology</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Inorganic Nanostructure</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Methods for the synthesis of Metal/Metal Oxide Nanoparticles</td>
<td>4</td>
</tr>
<tr>
<td>1.4.1 Solution-Phase Synthesis of Noble Metal Nanostructure</td>
<td>6</td>
</tr>
<tr>
<td>1.4.1.1 Citrate-Reduction Method</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1.2 Borohydrate Reduction Method</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1.3 In Situ Reduction Method</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1.4 Use of Small Organic Ligands</td>
<td>10</td>
</tr>
<tr>
<td>1.4.1.5 Use of Polymer/Complex Organic Molecules</td>
<td>10</td>
</tr>
<tr>
<td>1.4.1.6 Synthesis of Metal Nanoparticles Using</td>
<td>12</td>
</tr>
<tr>
<td>1.4.2 Solution-Phase Synthesis of Metal Oxide Nanoparticles</td>
<td>13</td>
</tr>
<tr>
<td>1.4.2.1 Precipitation method</td>
<td>14</td>
</tr>
<tr>
<td>1.4.2.2 Thermal Decomposition Method</td>
<td>14</td>
</tr>
<tr>
<td>1.4.2.3 Hydrothermal Method</td>
<td>15</td>
</tr>
<tr>
<td>1.4.2.4 Sol-Gel Approach</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Properties of Metal/Metal Oxide Nanoparticles</td>
<td>17</td>
</tr>
<tr>
<td>1.5.1 Optical Properties</td>
<td>18</td>
</tr>
<tr>
<td>1.5.1.1 Metal Nanoparticles</td>
<td>18</td>
</tr>
<tr>
<td>1.5.1.2 Metal Oxide Nanoparticles</td>
<td>20</td>
</tr>
<tr>
<td>1.5.2 Electronic Properties</td>
<td>21</td>
</tr>
<tr>
<td>1.5.2.1 Metal Nanoparticles</td>
<td>21</td>
</tr>
<tr>
<td>1.5.2.2 Metal Oxide Nanoparticles</td>
<td>22</td>
</tr>
<tr>
<td>1.6 Applications of Metal/Metal Oxide Nanostructures</td>
<td>24</td>
</tr>
<tr>
<td>1.6.1 Sensing Applications</td>
<td>24</td>
</tr>
<tr>
<td>1.6.1.1 Metal Nanoparticles</td>
<td>25</td>
</tr>
<tr>
<td>1.6.1.2 Metal Oxide Nanoparticles</td>
<td>26</td>
</tr>
<tr>
<td>1.6.2 Catalytic Applications</td>
<td>27</td>
</tr>
<tr>
<td>1.6.2.1 Metal Nanoparticles</td>
<td>27</td>
</tr>
<tr>
<td>1.6.2.2 Metal Oxide Nanoparticles</td>
<td>28</td>
</tr>
</tbody>
</table>
Chapter 2: Cuprous Oxide Nanoparticles: Synthesis and its Cytotoxicity Effects

2.1 Introduction 62
2.2 Experimental Section 64
 2.2.1 Materials and Methods 64
 2.2.2 Synthesis 64
 2.2.2.1 Synthesis of Cuprous Oxide Nanoparticles 64
 2.2.2.2 Synthesis of CuNPs-L-Tryptophan Conjugate 65
 2.2.3 Characterization 66
 2.2.3.1 Absorption 66
 2.2.3.2 Transmission Electron Microscopy 66
 2.2.3.3 Atomic Force Microscopy 66
 2.2.3.4 Fluorescence 66
 2.2.3.5 Circular Dichroism Analysis 67
 2.2.3.6 FT-IR Experiment 67
 2.2.3.7 Thermogravimetric Analysis 68
2.3 Results and Discussions 68
 2.3.1 Absorption Spectroscopy 68
 2.3.2 X-ray diffraction Study 69
 2.3.3 Thermogravimetric and Differential Scanning 70
 2.3.4 Transmission Electron Microscopy 70
 2.3.5 Atomic Force Microscopy 71
 2.3.6 FT-IR spectroscopy 73
 2.3.7 Binding study of the Cu₂O Nanoparticles with 74
 2.3.8 Circular Dichroism Spectroscopy 76
2.3.9 Stability study of CuNP-Trp conjugate in Dulbecco's Modified Eagle Medium (DMEM)

2.3.9.1 Absorption spectroscopy study

2.3.9.2 X-ray diffraction study of the CuNPs-Trp

2.3.9.3 X-ray diffraction Line Broadening Analysis

2.3.10 Dynamic Light Scattering

2.4 Cytotoxicity Study

2.4.1 Cell Culture Preparation

2.4.2 The MTT Assay

2.5 Summary and perspectives

References

Chapter 3: Green Synthesis of Gold Nanoparticles and its Interaction with Cancer Cells

3.1 Introduction

3.2 Experimental Section

3.2.1 Materials and Methods

3.2.2 Characterization

3.2.2.1 Absorption

3.2.2.2 Transmission Electron Microscopy

3.2.2.3 FT-IR measurement

3.2.2.4 Fluorescence

3.3 Results and Discussion

3.3.1 Synthesis of Gold Nanoparticles

3.3.2 Absorption Study

3.3.3 X-ray diffraction study

3.3.4 Transmission Electron Microscopy

3.3.5 Bonding and interaction pattern of BR on gold nanosurface: molecular detail by FT-IR analyses

3.3.6 Fluorescence study: Binding affinity of BR to Au (III)

3.3.7 Mechanism of of Au (III) Reduction by Bilirubin

3.3.8 Stability Study of AuBR

3.4 Cytotoxicity Behavior

3.5.1 Cell Culture Preparation

3.5.2 The MTT Assay
Chapter 4: Synthesis of Silver Nanoparticles and Their Interaction with Heavy metal Ions

4.1 Introduction

4.2 Experimental Section

4.2.1 Materials and Methods

4.2.2 Synthesis

4.2.2.1 Synthesis of the Bilirubin Mediated Silver Nanoparticles

4.2.2.2 Synthesis of the Polyvinylpyrrolidone Coated Silver Nanoparticles

4.2.2.3 Synthesis of the TWEEN® 20 Coated Silver Nanoparticles

4.2.3 Characterization

4.2.3.1 Absorption

4.2.3.2 Transmission Electron Microscopy

4.2.3.3 FT-IR measurement

4.3 Results and Discussions

4.4 Heavy Metal Ions Detection

4.4.1 Sensing of Metal Ions by Ag-BR Nanoparticles

4.4.2 Sensing of Metal Ions by Ag-PVP Nanoparticles

4.4.3 Sensing of Metal Ions by Ag-T20 Nanoparticles

4.4.4 Proposed Mechanism for Fe$^{3+}$ Ion Sensing

4.5 Density Functional Theory Analysis

4.5.1 Analysis of Complexes using Density Functional Theory

4.6 Conclusion

References