CONTENT

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Declaration</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Certificate from the Research Guide</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>List of Plates</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER I: INTRODUCTION 1-21

1.1 Statement of the problem 1
1.2 Review of literature 5
1.3 The study area 12
1.4 Objectives 13
1.5 Hypotheses 13
1.6 Methodology and data base 15
1.7 Organization of the study 20
1.8 Significance of the study 21

CHAPTER II: GEOGRAPHICAL BACKGROUND OF THE STUDY AREA 22-38

2.1 The Noa-Mangaldoi River system 22
2.2 Relief and slope 25
2.3 Geology and geomorphology 27
2.4 Climatic characteristics 29
2.5 Soils 31
2.6 Vegetation 32
2.7 Population and settlements 33
2.8 Landuse and land cover 35
2.9 Transport and communication 37
CHAPTER III: MORPHOMETRIC ANALYSIS OF THE NOA-MANGALDOI RIVER SYSTEM

3.1 Analysis of linear aspects
 3.1.1 Stream ordering
 3.1.2 Bifurcation ratio
 3.1.3 Law of stream numbers
 3.1.4 Law of stream length
 3.1.5 Stream length ratio
 3.1.6 Sinuosity index

3.2 Analysis of areal aspects
 3.2.1 Form factor
 3.2.2 Circulatory ratio
 3.2.3 Elongation ratio
 3.2.4 Stream frequency
 3.2.5 Drainage density
 3.2.6 Constant of channel maintenance
 3.2.7 Length of overland flow

3.3 Analysis of relief aspects
 3.3.1 Absolute relief
 3.3.2 Relative relief
 3.3.3 Dissection index
 3.3.4 Hypsometric analysis

CHAPTER IV: FLOW ANALYSIS

4.1 Flows in Noa and Mangaldoi river
 4.1.1 Hydrograph analysis
 4.1.1.1 Stage-discharge hydrograph
 4.1.1.2 Flow duration analysis
 4.1.1.3 Sediment rating curve
 4.2 Low-flow hydrology
 4.2.1 Low-flow variation
 4.2.2 Ground water regime and fluctuation
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2.1</td>
<td>Locational occurrences of ground water</td>
<td>94</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Present status of ground water</td>
<td>95</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Low-flow frequency and probability analysis</td>
<td>98</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Plotting Position Method</td>
<td>99</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Log Pearson Type-III Method</td>
<td>100</td>
</tr>
<tr>
<td>4.2.3.3</td>
<td>Gumbel’s Extreme Value Distribution</td>
<td>102</td>
</tr>
<tr>
<td>4.3</td>
<td>High flow hydrology</td>
<td>105</td>
</tr>
<tr>
<td>4.3.1</td>
<td>High flow variation</td>
<td>106</td>
</tr>
<tr>
<td>4.3.2</td>
<td>High flow frequency and probability analysis</td>
<td>114</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Plotting Position Method</td>
<td>114</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Log Pearson Type-III Method</td>
<td>116</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>Gumbel’s Extreme Value Distribution</td>
<td>117</td>
</tr>
</tbody>
</table>

CHAPTER V: CHANNEL CHANGES: PATTERN AND PROCESSES

5.1 Spatio-Temporal Changes
5.1.1 Nature and types of channel changes
5.1.2 Magnitude of channel changes
5.1.3 Changes in channel morphology
5.1.4 Channel hydraulic geometry
5.2 Processes of channel changes

CHAPTER VI: FLUVIO-GEOMORPHIC HAZARDS: CAUSES AND EFFECTS

6.1 Types of fluvio-geomorphic hazards
6.1.1 Flood as a fluvio-geomorphic hazard
6.1.2 Bank Erosion as a fluvio-geomorphic hazard
6.2 Flood plain zones and hazards
6.3 Magnitude of hazards and their damages
6.4 Causes of hazards 171
6.5 Impacts of hazards 175

CHAPTER VII: HUMAN RESPONSES TO HAZARDS AND THEIR MANAGEMENT 178-195
7.1 Modes of human responses 178
7.2 Institutional support towards human responses 181
7.3 Measures taken for human adjustment 189
7.4 Suggestive measures and strategies for flood and associated hazard management 191

CHAPTER VIII: SUMMARY AND CONCLUSION 196-201
8.1 Summary 196
8.2 Conclusion 197
8.3 Suggestions 200

REFERENCES 207-225
APPENDICES 226-230