Table of Contents

CHAPTER 1

Study of human genes and diseases using *Drosophila melanogaster* as a model system

1.1 Introduction .. 1
1.2 What is a model organism? 2
1.3 Why use an invertebrate model system? 3
1.4 *Drosophila* as a model system 6
 1.4.1 Loss of function genetics using *Drosophila* 8
 1.4.2 Gain of function genetics using *Drosophila* 9
1.5 Unraveling the genetic basis of development of *Drosophila* ... 11
 1.5.1 Homologous pathways of development 11
1.6 Use of *Drosophila* in studying the function of vertebrate genes 13
1.7 *Drosophila* models of human diseases 15
 1.7.1 Importance of identifying modifiers of disease phenotypes ... 17
1.8 *Drosophila* as a model for cancer research 18
1.9 *Drosophila* as a model for Drug screening 21
1.10 Studying the function of those genes for which no *Drosophila* homologue exist 23
 1.10.1 After *Drosophila*, back to the mammalian system .. 25
1.11 Objectives of the current work 25
 1.11.1 Structure-function relationship of human colon cancer gene APC 27
 1.11.2 Comparative studies between *Drosophila* and human APC .. 28
 1.11.3 Identification of kinase/s that may influence the function of APC 29
CHAPTER 2

Material and methods

2.1 Routine Fly Techniques

2.2 UAS strains were used in this study

2.3 Loss of function alleles

2.4 List of GAL4 drivers used in this study

2.5 Molecular biology Techniques

2.5.1 Colony PCR

2.5.2 APC-related constructs for the generation of transgenic flies

2.5.2.1 MCR truncated hAPC (hAPC-MCR)

2.5.2.2 Site-directed mutagenesis on full-length hAPC

2.5.2.3 Site-directed mutagenesis on ARM/β-catenin binding domain of hAPC

2.5.2.4 ARM/β-catenin binding domain of dAPC (dAPC-CBD)

2.5.2.5 Site-directed mutagenesis on ARM/β-catenin binding domain of dAPC

2.5.3 WDR13 related constructs for the generation of transgenic flies

2.5.3.1 hWDR13NE

2.5.3.2 hWDR13NE-ORF

2.5.3.3 hWDR13HT

2.6 Generation of Transgenic flies
2.6.1 Preparation of DNA
2.6.2 Preparation of embryos

2.7 Immuno-histochemistry
2.7.1 List of Primary antibodies used
2.7.2 List of Secondary antibodies used
2.7.3 List of tertiary antibodies used

2.8 Fluorescence microscopy and confocal microscopy

2.9 Cuticular preparation of adult flies

2.10 RNA isolation and Real-time PCR

CHAPTER 3

Structure-function relationship of human colon cancer gene \textit{APC}

3.1 Introduction

3.2 Colorectal cancer

3.3.1 APC negatively regulates WNT pathway

3.3.2 Other functions of APC Protein
3.3.2.1 Role in cell migration
3.3.2.2 Role in mitosis and chromosome segregation
3.3.2.3 Role in negative regulation of cell cycle progression
3.3.2.4 Role of APC in apoptosis
3.3.2.5 Role of APC in cell adhesion
3.3.2.6 Direct Role of APC in repression of Wnt target genes

3.4 How do \textit{APC} mutations cause cancer
3.5 Genotype-phenotype correlation in \textit{APC}
3.6 Truncating mutations in \textit{APC}
3.7 Background work done in our lab related to the current study
3.8 What is the advantage of using an in vivo \textit{Drosophila} model?
3.9 The main questions addressed using \textit{Drosophila} gain of function models
3.10 Results and Discussion
 3.10.1 Apico-basal localization of different forms of human \textit{APC} in the \textit{Drosophila} wing epithelium
 3.10.2 Leg phenotypes due to reduced WNT signaling
 3.10.3 Sequestration of ARM/\(\beta\)-catenin in wing imaginal discs
 3.10.4 Method of quantitation of ARM/\(\beta\)-catenin sequestration
 3.10.5 Results of interactions between full length human \textit{APC} and its two truncated versions
 3.10.6 Missense mutations in \textit{hAPC}
 3.10.6.1 Results of missense \textit{APC} mutations
 3.11 Conclusions and future perspectives

\textbf{CHAPTER 4}
\textbf{Comparative Studies Between Human And \textit{Drosophila} \textit{APC}}
4.1 Introduction
4.2 Predictions from the molecular modeling of \textit{APC-ARM}/\(\beta\) catenin complexes
4.3 Experimental validation of predictions from structural modeling studies
4.4 Results and discussion
4.4.1.1 Human APC-CBD related results 88
4.4.1.2 Method of quantitation of ARM/β-catenin sequestration 89
4.4.2 Drosophila APC-CBD related results 91

CHAPTER 5
Role of kinases in APC function
5.1 Introduction 95
5.2 Results 99

5.2.1 The Primary function of APC i.e. sequestration of ARM/β-catenin
is not dependent on the function of GSK-3β in vivo. 99
5.2.2 Binding of APC to ARM/β-catenin is not dependent on CK1ε 101

5.3 Discussion 101

CHAPTER 6
Functional Study Of The Human WDR13 By Targeted Expression In Drosophila melanogaster
6.1 Introduction 104

6.1.1 Studying human genes using Drosophila melanogaster 104
6.1.2 Structural basis of multiple protein-protein interactions 106

6.2 WDR13, a novel member of WD-repeat proteins 109
6.3 Earlier studies on WDR13 110
6.4 Results and Discussion 112
6.4.1 *Drosophila* transgenic lines expressing longer isoform
(485aa) of human WDR13

6.4.2 Transgenic *Drosophila* lines expressing the shorter
isoform (393aa) of human Wdr13

6.4.2.1 Generation of GMR-GAL4-WDR13HTW+ recombinant

6.4.2.2 Wing phenotypes caused by the mis-expression of WDR13HT

6.4.2.3 WDR13HTW+ expression in the germline

6.4.2.4 Genetic screens to identify factors that modify WDR13HTW+ induced phenotypes

6.4.2.5 WDR13 and WNT signaling

6.4.2.6 Role of WDR13 as a possible modulator of the cell cycle

6.4.2.7 WDR13HT as a modulator of Hedgehog signaling

6.4.2.8 WDR13 as a modulator of Groucho function

6.4.2.9 Tissue-specific suppressors of WDR13HTW+ induced phenotypes

6.4.2.10 Interaction between WDR13HT with Extra Sex Combs

6.4.2.11 Interaction between WDR13HTW+ and PP1α-13c

6.4.2.12 Interaction of WDR13HTW+ with *Drosophila* WDR5 homologue- Will Die Slowly

6.5 Conclusions and future line of work

List of References

Annexure
Report on Molecular modeling of APC-β-catenin complexes