CONTENTS

CHAPTER – I: Introduction

1.1 Atmospheric Boundary Layer 1
1.2 Coastal Atmospheric Boundary Layer 3
1.3 A Brief review on previous studies on atmospheric dispersion in the boundary layer 5
 1.3.1 Studies in abroad 5
 1.3.2 Studies in India 9
1.4 Why Megacities? 10
1.5 Previous Atmospheric Dispersion Studies over Megacities 11
1.6 Motivation 16
1.7 Objectives 17
1.8 Thesis Organization 18

CHAPTER – II: Theoretical Aspects of Atmospheric Dispersion

2.1 Introduction 21
2.2 Constituent layers 21
2.3 Principal types 22
 2.3.1 Convective planetary boundary layer 22
 2.3.2 Stably stratified planetary boundary layer 23
2.4 Boundary layer equations 24
2.5 Turbulent boundary layers 27
CHAPTER – III: Climatic Conditions of megacities and Brief Description of Numerical Models Used for the Study

3.1 Geographical Description of Mega City – Delhi
 3.1.1 Climatic Conditions of Delhi 30

3.2 Geographical Description of Mega City - Kolkata
 3.2.1 Climatic Conditions of Kolkata 32

3.3 Geographical Description of Mega City – Mumbai
 3.3.1 Climatic Conditions of Mumbai 36

3.4 Geographical Description of Mega City – Chennai
 3.4.1 Climatic Conditions of Chennai 39

3.5. Brief Description of Numerical Models used for the Study 39
 1.5.1 Advanced Regional Prediction System 40
 3.5.1.1 Subgrid Scale Turbulence Closure 41
 3.5.1.2 PBL Depth Calculation 41
 3.5.1.3 Grid Structure and Boundary Conditions 42

3.5.2 Weather Research and Forecast (WRF) Model 43
 3.5.2.1 Features of WRF Model 44
 3.5.2.2 The WRF Modeling System Program Components 46
 (a) WPS 46
 (b) WRF-Var 47
 (c) ARW Solver 48
CHAPTER - IV: Numerical Study of Atmospheric Dispersion over Coastal and Non Coastal Mega cities – Model Validation using observed data

4.1 Introduction 50

4.2 Atmospheric Dispersion over Kalpakkam during south-west and north-east monsoon seasons 50

 4.2.1 Objectives 52

 4.2.2 Outline of the coastal site modeled and meteorological data set used for comparison. 56

 4.2.3 Initialization 56

 4.2.4 Boundary layer conditions for CASE I 59

 4.2.5 Boundary layer conditions for CASE II 59

 4.2.6 Model results and Discussion 60

 4.2.6.1 CASE I (south west season) 60

 (a) Wind pattern comparison with observations 59

 (b) Potential temperature variation and comparison with observations 61

 (c) Relative humidity 65

 4.2.6.2 CASE II (north east season) 65

 (a) Wind pattern comparison with observations 65

 (b) Potential temperature variation and comparison with observation 68

 (c) Relative humidity 70

 4.2.7 Thermal internal boundary Layer 71

 4.2.7.1 CASE I (south west season) 72
4.2.7.2 CASE II (north east season) 72

4.2.8. Conclusion 74

4.3 Study of Atmospheric Dispersion around Urban - Heat island, Delhi 77

4.3.1 Review Studies 78

4.3.2 Results and Discussion 80

4.3.3 Conclusions 92

CHAPTER – V: Effect of Solar Cycle on Atmospheric Dispersion over Delhi

5.1 Introduction – Solar Cycle 93

5.2 Atmospheric Dispersion over Delhi mega city during solar cycle 2000 to 2010 95

5.2.1 Diurnal variation of meteorological parameters during South West monsoon 96

5.2.2 Diurnal variation of meteorological parameters during North East monsoon 102

5.2.3 Average monthly variations of meteorological parameters in South West monsoon from year 2000 to 2010 105

5.2.4 Average monthly variations of meteorological parameters in North East monsoon from year 2000 to 2010 107

5.2.5 Maximum and minimum values of meteorological parameters during south west and north east monsoon season 108

5.2.6 Vertical profiles of meteorological parameters during south west monsoon season 110

5.2.7 Vertical profiles of meteorological parameters during north east 115
monsoon season

5.2.8 Boundary layer height during south west and north east monsoon seasons from year 2000 to 2010.

5.3 Conclusions

CHAPTER – VI: Atmospheric Dispersion over a mega city Kolkata

6.1 Introduction

6.2 Analysis of meteorological parameters behavior on atmospheric dispersion over Kolkata from year 2000 to 2010

6.2.1 Diurnal variation of meteorological parameters during South West monsoon

6.2.2 Diurnal variation of meteorological parameters during North East monsoon

6.2.3 Average monthly variations of meteorological parameters in South West monsoon from year 2000 to 2010

6.2.4 Average monthly variations of meteorological parameters in North East monsoon from year 2000 to 2010

6.2.5 Vertical profiles of meteorological parameters during south west monsoon season

6.2.6 Vertical profiles of meteorological parameters during north east monsoon season

6.2.7 Maximum and minimum values of meteorological parameters during south west and north east monsoon season

6.2.8 Boundary layer height during south west and north east monsoon seasons from year 2000 to 2010.

6.3 Conclusions

CHAPTER – VII: Atmospheric Dispersion over a mega city Mumbai
7.1 Introduction

7.2 Analysis of meteorological parameters behavior on atmospheric dispersion over Mumbai from year 2000 to 2010

7.2.1 Diurnal variation of meteorological parameters during South West monsoon

7.2.2 Diurnal variation of meteorological parameters during North East monsoon

7.2.3 Average monthly variations of meteorological parameters in South West monsoon from year 2000 to 2010

7.2.4 Average monthly variations of meteorological parameters in North East monsoon from year 2000 to 2010

7.2.5 Maximum and minimum values of meteorological parameters during south west and north east monsoon season

7.2.6 Vertical profiles of meteorological parameters during south west monsoon season

7.2.7 Vertical profiles of meteorological parameters during north east monsoon season

7.2.8 Boundary layer height during south west and north east monsoon seasons from year 2000 to 2010.

7.3 Conclusions

CHAPTER – VIII: Atmospheric Dispersion over a mega city Chennai

8.1 Introduction

8.2 Analysis of meteorological parameters behavior on atmospheric dispersion over Chennai from year 2000 to 2010

8.2.1 Diurnal variation of meteorological parameters during South West monsoon

8.2.2 Diurnal variation of meteorological parameters during North East monsoon
8.2.3 Average monthly variations of meteorological parameters in South West monsoon from year 2000 to 2010

8.2.4 Average monthly variations of meteorological parameters in North East monsoon from year 2000 to 2010

8.2.5 Maximum and minimum values of meteorological parameters during south west and north east monsoon season

8.2.6 Vertical profiles of meteorological parameters during south west monsoon season

8.2.7 Vertical profiles of meteorological parameters during north east monsoon season

8.2.8 Boundary layer height during south west and north east monsoon seasons from year 2000 to 2010.

8.3 Conclusions

CHAPTER – IX: Summary and Conclusions

9.1 Summary and Conclusions

9.2 Numerical Analysis of Atmospheric Dispersion – Model Validation

9.3 Atmospheric Dispersion – Megacities

9.3.1 Delhi

9.3.2 Kolkata

9.3.3 Mumbai

9.3.4 Chennai

9.4 Atmospheric dispersion over non-coastal and coastal cities

9.5 Future Scope of the work

References