CHAPTER 8
CHAPTER 8

Carbon Supported Pt–Sn–Rh Electrocatalysts for Methanol Electro-Oxidation

Abstract

Electrosynthesis, characterization and electrocatalytic properties of Pt\textsubscript{100}/C, Pt\textsubscript{50}Sn\textsubscript{50}/C, Pt\textsubscript{50}Rh\textsubscript{50}/C, Pt\textsubscript{50}Sn\textsubscript{40}Rh\textsubscript{10}/C and Pt\textsubscript{50}Sn\textsubscript{10}Rh\textsubscript{40}/C catalysts towards oxidation of methanol by ultrasonic-assisted co-impregnation reduction method with metal loading of 40 wt.% (and rest 60 wt.% is carbon). The different nominal compositions of binary Pt–Sn/C, Pt–Rh/C and ternary Pt–Sn–Rh/C electrocatalysts were characterized by TEM, EDX, and XRD techniques. Energy dispersive X-ray spectroscopy and X-ray diffractometry confirmed the formation of Pt–Sn–Rh/C, Pt–Sn/C, Pt–Rh/C metal catalyst having typical Pt crystalline structure and the formation of Pt–Sn alloy. Electrochemical analyses obtained at room temperature by cyclic voltammetry and chronoamperometry showed that Pt\textsubscript{50}Sn\textsubscript{10}Rh\textsubscript{40}/C gives higher current density compared to that of Pt\textsubscript{50}Sn\textsubscript{40}Rh\textsubscript{10}/C, Pt\textsubscript{50}Sn\textsubscript{50}/C and Pt\textsubscript{50}Rh\textsubscript{50}/C. The power density obtained using Pt\textsubscript{50}Sn\textsubscript{10}Rh\textsubscript{40}/C (32.94 mW cm-2) as anode catalyst in MLMFC was higher than that for Pt\textsubscript{50}Sn\textsubscript{40}Rh\textsubscript{10}/C, Pt\textsubscript{50}Sn\textsubscript{50}/C and Pt\textsubscript{50}Rh\textsubscript{50}/C at room temperature, with catalyst loading of 2 mg cm-2. Addition of Rh on anode electrocatalyst enhanced the cell performance, by helping in breaking the CO bond. In this work, carbon-supported binary Pt–Sn/C, Pt–Rh/C and ternary Pt–Sn–Rh/C anode catalysts were successfully tested in a single membraneless fuel cell using 1.0 M methanol as the fuel and 0.1 M sodium percarbonate as the oxidant in the presence of 0.5 M H\textsubscript{2}SO\textsubscript{4} as the electrolyte at room temperature. Based on the experimental results, we conclude that the trimetallic combination of Pt\textsubscript{50}Sn\textsubscript{10}Rh\textsubscript{40}/C shows superior methanol electrooxidation than bimetallic combinations of Pt\textsubscript{50}Sn\textsubscript{50}/C and Pt\textsubscript{50}Rh\textsubscript{50}/C.
8.1 Introduction

Carbon-supported platinum is commonly used as anode catalyst in low-temperature fuel cells; however, pure Pt is not an efficient anodic catalyst for the membraneless methanol fuel cell (MLMFC). Platinum itself is known to be rapidly poisoned on its surface by strongly adsorbed species coming from the dissociative adsorption of methanol. Efforts to mitigate the poisoning of Pt have been concentrated on the addition of co-catalysts to platinum (Antolini et al. 2007, Song et al. 2006, Spinace et al. 2005). In this manner, materials based on PtSn have been considered the most active electrocatalysts for methanol electro-oxidation. Souza et al. (2002) studied the electro-oxidation of methanol on Pt, Rh and PtRh electrodes. It was found that Rh was the less active electrocatalyst; on the other hand, the addition of small amounts of Rh to Pt increased to CO₂/acetaldehyde ratio. It was concluded that the presence of Rh was important to produce a good catalyst. Thus, PtRh/C electrocatalysts were considered promising candidates for methanol oxidation if a third element was added to improve the overall reaction rate. Recently, Kowal et al. (2009) prepared a PtRhSnO₂/C electrocatalyst by depositing Pt and Rh atoms on carbon-supported SnO₂ nanoparticle and good results for methanol electro-oxidation were obtained. In the present study, Pt₁₀₀/C, Pt₅₀Sn₅₀/C, Pt₅₀Rh₅₀/C, Pt₅₀Sn₄₀Rh₁₀/C and Pt₅₀Sn₁₀Rh₄₀/C catalysts were prepared by co-impregnation reduction method from their precursors to study methanol electro-oxidation. The prepared electrocatalysts are characterized using transmission electron microscope (TEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis. Methanol electro-oxidation in the presence of above catalysts was studied using cyclic voltammetry (CV), and chronoamperometry (CA). Finally, the catalysts were tested as the anode in microfluidic membraneless fuel cell.
8.2 Experimental

8.2.1 Materials

The metal precursors used for the preparation of electrocatalysts were H$_2$PtCl$_6$·6H$_2$O (from Merck), SnCl$_2$·2H$_2$O (from Alfa Aesar), and RhCl$_3$·3H$_2$O (from Merck). Vulcan XC-72R carbon black (from Cabot Corp.) was used as a support for the catalysts. Graphite plates (3-cm long and 0.1-cm wide from E-TEK) were used as substrates for the catalyst to prepare the electrodes. Polytetrafluoroethylene (PTFE) (6%; Aldrich) dispersion was used to prepare the catalyst slurry. Iso-propanol and sodium borohydride (from Merck) was used as the solvent and reduction agent respectively. Methanol (from Merck), sodium percarbonate (from Riedel), and sulphuric acid (from Merck) were used as the fuel, oxidant, and electrolyte for electrochemical analysis, respectively. All the chemicals were of analytical grade. Pt/C (40-wt%; E-TEK) was used as the cathode catalyst.

8.2.2 Catalyst Preparation

Carbon-supported ternary Pt–Sn–Rh catalysts with different atomic ratios were synthesized by ultrasonic-assisted co-impregnation reduction method. The precursors were first suspended in iso-propanol and ultrasonicated for 3h. The carbon support Vulcan XC-72R, was preheated to 110°C for 2h and suspended in iso-propanol separately and ultrasonicated for 3 h. Precursor suspension is then added drop wise to carbon slurry (Zhou et al. 2005). The weight ratio of Pt–X/C (X = Sn, Rh, Sn–Rh) was controlled according to the targeted metal loading. Ultrasonic blending for 3h, of precursor and carbon suspension was carried out to ensure the proper impregnation of metal precursors on carbon support. The suspension was then kept at 70°C for 12 h to evaporate iso-propanol. To reduce metal precursors 0.2 M NaBH$_4$ solution was added to the mixture with stirring and further stirred for 3 h to confirm termination of reduction reaction. Finally the precipitate was collected by
filtration, washed with deionized (DI) water, and dried at 70°C for 2 h. The electrocatalytic mixtures and the atomic ratios were Pt_{100}/C, Pt_{50}Sn_{50}/C, Pt_{50}Rh_{50}/C, Pt_{50}Sn_{40}Rh_{10}/C and Pt_{50}Sn_{10}Rh_{40}/C. The nominal loading of metals in the electrocatalysts was 40% wt. and the remaining was 60% wt. carbon.

8.2.3 Physical Characterization

The morphology, microstructure, and elemental composition of catalysts were investigated by transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis under the Philips CM 120 microscope/EDX analyzer equipped with a LaF₆ filament. The particle size distribution and the mean particle size were also evaluated under TEM. The crystal structure of the synthesized electrocatalysts was characterized by powder X-ray diffraction (XRD) by using the Rigaku multiflex diffractometer (model RU-200 B) equipped with a Cu-Kα radiation source (λ_{Kα1} = 1.5406 Å) operating at the room temperature. The tube current was 40 mA, with a tube voltage of 40 kV. The 2θ angular regions between 20° and 90° were recorded at a scan rate of 5° min⁻¹. The mean particle size analyzed by TEM was verified by determining the crystallite size from the XRD pattern by using the Scherrer formula. Pt (2 2 0) diffraction peak was selected to calculate the crystallite size and lattice parameter of platinum. According to the Scherrer’s Eq. 8.1 (Radmilovic et al. 1995)

\[D = \frac{0.9 \lambda_{K\alpha 1}}{\beta_{2\theta} \cos \theta_{\text{max}}} \]

(8.1)

Where, \(D \) is the average crystallite size, \(\theta_{\text{max}} \) is the angle at the position of the peak maximum, \(\beta_{2\theta} \) is the width of the peak (in radians), 0.9 is the shape factor for spherical
crystallite, and $\lambda_{K\alpha 1}$ is the wavelength of the X-rays used. The lattice parameters of the catalysts were estimated according to Eq. 8.2 (Radmilovic et al. 1995):

$$a = \frac{\sqrt{2} \lambda_{K\alpha 1}}{\sin \theta_{\text{max}}}$$ \hspace{1cm} (8.2)

Where, a is the lattice parameter (nm) and all other symbols have the same meanings as in Equation 1 (Beyhan et al. 2013).

8.2.4 Electrochemical Measurement

Electrochemical studies of the electrocatalysts were performed by using the thin porous coating technique (Colmati et al. 2007). All electrochemical measurements were performed on an electrochemical workstation (model CHI6650; CH Instruments, USA) interfaced with a personal computer using the CHI software at the room temperature. A common three-electrode electrochemical cell based on the cyclic voltammetry (CV) and chronoamperometry (CA) techniques for the measurements. Catalyst-coated glassy carbon electrode (GCE; 3-mm diameter and 0.071 cm2 of electrode area, CHI, USA) was used as the working electrode and platinum foil was used as the counter electrode. Ag/AgCl in saturated KCl was used as the reference electrode. The working electrode was prepared by applying the catalyst ink composed of 20 mg of the electrocatalysts in a solution of 50-mL water containing three drops of 6% PTFE suspension. The resulting mixture was treated in an ultrasound bath for 10 min to obtain a uniform dispersion. The catalyst slurry was then drop-cast on to a glassy carbon electrode and allowed to dry at 100°C for 30 min. For assessing the electrocatalytic activity of the working electrode, CV was obtained in 1.0 M methanol and
0.5 M H$_2$SO$_4$ solution with a scan rate of 50 mV s$^{-1}$. For the durability test, the chronoamperometric experiments were conducted at 0.1 V for 3000 s in the same electrolyte. Before each measurement, the solution was purged with high-purity nitrogen gas for at least 30 min to ensure oxygen-free measurements.

8.2.5 Single Cell Test

In the present study, we fabricated the membraneless methanol fuel cell (MLMFC) by using a laminar flow-based fuel cell configuration (Narayanan et al. 2003, Ponmani et al. 2014, Arun et al. 2013). In this MLMFC, methanol was used as a fuel, sodium percarbonate as an oxidant, and H$_2$SO$_4$ as an electrolyte. Sodium percarbonate (2Na$_2$CO$_3$.3H$_2$O$_2$) is a cheap, environment friendly, nontoxic, and large-scale industrial chemical, primarily used as a source of ‘active oxygen’ in detergents and as a mild antiseptic. In the crystalline state, sodium percarbonate existed as a dimeric peroxo-salt with water of hydration, but in the aqueous solution, it involved hydrogen peroxide (Cotton et al. 1988, Karunakaran et al. 1995, Karunakarana et al. 2002, McKillop et al. 2000), as shown in Eq. (3):

$$2Na_2CO_3$.3H$_2O_2$ → 2Na$_2$CO$_3$ + 3H$_2$O$_2$$$

In MLMFC, the aqueous fuel and oxidant streams flow in parallel in a single microchannel with the anode and cathode on the opposing sidewalls (Fig. 8.1). Graphite plates of 0.1 cm thickness served as the current collectors and catalyst support structures. The different anode and cathode catalysts were coated onto the graphite plates. For a single cell, the anode catalysts with different atomic ratios were prepared as follows: the catalyst ink was prepared by mixing the required quantity of catalyst with a solution of 50 mL water containing three drops of 6% PTFE dispersion in an ultrasonic bath for 10 min to obtain a
uniform dispersion. The catalyst slurry was then spread onto the graphite plate by brushing, followed by drying at 100°C for 30 min to obtain the anode and cathode electrodes. The catalysts tested on the anode side were Pt₁₀₀/C, Pt₅₀Sn₅₀/C, Pt₅₀Rh₅₀/C, Pt₅₀Sn₄₀Rh₁₀/C and Pt₅₀Sn₁₀Rh₄₀/C with a catalyst loading 2 mg/cm². On the cathode side, Pt₁₀₀/C with catalyst loading 2 mg/cm² was used in all the experiments.

Fig. 8.1 Schematic of the E-shaped membraneless laminar flow-based fuel cell with graphite plates molded with poly(dimethylsiloxane) (PDMS) and sealed with poly(methylmethacrylate) (PMMA)

The two catalyst-coated graphite plates were aligned to form a channel with 0.1 cm electrode-to-electrode distance (width), at 3-cm length, and 0.1 cm height. The anolyte (fuel and electrolyte) and catholyte (oxidant and electrolyte) streams flow in a laminar fashion over the anode and cathode, respectively. The electrode area along the microchannel wall between the inlets and the outlet (3-cm long and 0.1-cm wide) was used as the geometric surface area of the electrodes in this study (0.3 cm²). The design has been described in detail elsewhere (Choban et al. 2004, Jayashree et al. 2010). The anolyte used in the anode side was 1.0 M methanol + 0.5 M H₂SO₄ and the catholyte used in the cathode side was 0.1 M perborate + 0.5 M H₂SO₄. The flow rate of each of the streams was 0.3 mL min⁻¹ (total flow rate of 0.6
mL min$^{-1}$). The MLMFC was operated at the room temperature. The current-voltage characteristics of MLMFC were measured on an electrochemical workstation and the data was verified by using a multi-meter (MASTECH® MAS830L).

8.3 Results and Discussions

8.3.1 Physical Characterization

8.3.1.1 X-Ray Diffraction

X-Ray Diffraction (XRD) patterns of Pt$\text{100}/C$, Pt$\text{50} \text{Sn} \text{50}/C$, Pt$\text{50} \text{Rh} \text{50}/C$, Pt$\text{50} \text{Sn} \text{40} \text{Rh} \text{10}/C$ and Pt$\text{50} \text{Sn} \text{10} \text{Rh} \text{40}/C$ catalysts are shown in Fig. 8.2. The peak at 25–30° observed in all diffraction patterns of the carbon-supported catalysts is attributed to the (0 0 2) plane of the hexagonal structure of the Vulcan XC-72R carbon support (Tayal et al. 2004). The diffraction peaks at around 40°, 47°, 67°, and 82° are attributed to the Pt (1 1 1), (2 0 0), (2 2 0), and (3 1 1) crystalline planes, respectively, which represents the typical character of crystalline Pt with face-centered cubic (FCC) crystalline structure. These diffraction peaks are shifted to lower 2θ values in the Sn-containing catalysts with respect to the corresponding peaks in the pure Pt catalyst. The shift of the Pt-peaks to the lower angles reveals alloy formation between the angle Pt and Sn, which is caused by the incorporation of Sn in the fcc structure of Pt (Ribeiro et al. 2007). In the case of Pt$\text{50} \text{Rh} \text{50}/C$, the addition of Rh to Pt promoted a shift in the Pt-peaks to higher 2θ values, indicating the formation of an alloy upon incorporation of Rh into the platinum structure (Spinace et al. 2010). The SnO$_2$ (2 1 1) peaks are visible in the XRD patterns of Sn-containing catalysts. No peaks of metallic Rh or Rh oxides were detected in the Pt–Sn–Rh catalysts, but their presence cannot be discarded because they may be present in a very small particle size or even in an amorphous form. The lattice parameters and the average crystallite size of the catalysts obtained from the XRD patterns are listed under Table 8.1.
The fcc lattice parameters were evaluated from the angular position of the (2 2 0) peaks and the calculated value for Pt–Rh/C electrocatalyst (0.3883 nm) was lower than that of Pt/C electrocatalyst (0.3913 nm), indicating a lattice contraction caused by the incorporation of Rh into the fcc structure of platinum after alloying. For Pt–Sn/C electrocatalyst the fcc lattice parameter measured (0.3964 nm) was larger than the one obtained for Pt/C electrocatalyst, due to a lattice expansion after alloying, indicating that part of Sn was incorporated in the fcc structure of Pt. The lattice parameters of the ternary catalysts were larger than that of Pt–Rh/C and smaller than that of Pt–Sn/C. The lattice parameters of the ternary catalysts were larger than that of Pt–Rh/C and smaller than that of Pt–Sn/C. This intermediate value of the lattice parameter of the ternary catalysts can be explained in two ways: (1) a lower amount of Sn alloyed with Pt. Indeed, as observed in other ternary catalysts, the presence of a third non-alloyed metal can cause a decrease of the degree of alloying of the binary base alloy with respect to the binary catalyst (Venkatraman et al. 2003, Jusys et al. 2002). (2) The formation of a ternary alloy. In view of the fact that Rh alloys with Pt, the formation of a ternary Pt–Sn–Rh alloy is likely. To support this hypothesis,
it was found that the lattice parameter of the Pt-alloy linearly decreases with increasing the nominal Rh content in the catalyst, as shown in Fig. 8.3.

Fig. 8.2 X-Ray diffraction patterns of Pt\textsubscript{100}/C, Pt\textsubscript{50}Sn\textsubscript{50}/C, Pt\textsubscript{50}Rh\textsubscript{50}/C, Pt\textsubscript{50}Sn\textsubscript{40}Rh\textsubscript{10}/C and Pt\textsubscript{50}Sn\textsubscript{10}Rh\textsubscript{40}/C catalysts

Fig 8.3 Dependance of the FCC lattice parameter of the Pt–Sn–Rh/C alloy catalyst on Rh content
The average particle size was estimated using the Scherrer equation (Table 8.1). The particle sizes for Pt–Rh/C, Pt–Sn/C, and Pt–Sn–Rh/C electrocatalysts were in the range of ~2.5–4.3 nm.

8.3.1.2 Transmission Electron Microscopy (TEM)

TEM images and histograms of the Pt_{50}Sn_{50}/C, Pt_{50}Rh_{50}/C, and Pt_{50}Sn_{10}Rh_{40}/C catalysts are shown in Fig. 8.4. The micrographs of the electrocatalysts showed that all the catalysts had a good dispersion on the Vulcan XC-72R with a size in the same range and following a log-normal size distribution (Granqvist et al. 1976, Granqvist et al. 1976, Ehrburger et al. 1978). The average particle size for Pt_{50}Sn_{50}/C, Pt_{50}Rh_{50}/C, and Pt_{50}Sn_{10}Rh_{40}/C catalysts was 2–4 nm. In comparison to Pt_{50}Sn_{50}/C, and Pt_{50}Rh_{50}/C, the mean particle size of Pt_{50}Sn_{10}Rh_{40}/C was smaller. The variation in the mean particle size for these catalysts was quite similar in both the cases (TEM and XRD), indicating good particle dispersion without formation of large particle aggregates (Table 8.1).
Fig. 8.4 TEM images and histograms of a) Pt\textsubscript{50}Sn\textsubscript{50}/C, b) Pt\textsubscript{50}Rh\textsubscript{50}/C and c) Pt\textsubscript{50}Sn\textsubscript{10}Rh\textsubscript{40}/C catalysts

8.3.1.3 Energy Dispersive X-ray (EDX) Analysis

EDX analyses of all the Pt\textsubscript{50}Sn\textsubscript{50}/C, Pt\textsubscript{50}Rh\textsubscript{50}/C and Pt\textsubscript{50}Sn\textsubscript{10}Rh\textsubscript{40}/C catalysts are shown in Fig. 8.5. Fig. 8.5a–c indicates the presence of Pt, Sn, and C; Pt, Rh, and C; and both the combinations of Pt, Sn, Rh, and C, respectively. The EDX results are shown in Table 8.1.
The prepared catalysts had the desired elements with some variation in their composition. The EDX results of the binary Pt–Sn/C and Pt–Rh/C and the ternary Pt–Sn–Rh/C catalysts were extremely close to the nominal values, indicating that the metals were loaded onto the carbon support without any obvious loss.

Fig. 8.5 EDX spectra of a) Pt$_{50}$Sn$_{50}$/C, b) Pt$_{50}$Rh$_{50}$/C and c) Pt$_{50}$Sn$_{10}$Rh$_{40}$/C catalysts

8.3.2 Electrochemical Characterization

8.3.2.1 Cyclic Voltammetry

Fig. 8.6a shows the cyclic voltammograms (CV) of the Pt$_{100}$/C, Pt$_{50}$Sn$_{50}$/C, Pt$_{50}$Rh$_{50}$/C, Pt$_{50}$Sn$_{40}$Rh$_{10}$/C and Pt$_{50}$Sn$_{10}$Rh$_{40}$/C electrocatalysts, obtained in 0.5 mol dm$^{-3}$ H$_2$SO$_4$, at a scan rate of 50 mV s$^{-1}$ between 0.05 and 0.8 V (vs. Ag/AgCl) in the absence of methanol and at room temperature. For the five electrocatalysts compositions presented herein, the area of adsorption/desorption of hydrogen at the platinum surface for E < 0.4 V vs. Ag/AgCl can be clearly seen. This region is distorted as compared to pure Pt and this is
associated with the presence of transition metals such as ruthenium, iridium, osmium, etc. (Ribeiro et al. 2007). Beyond this potential value, one observes the formation of layers of oxides and hydroxides due to the activation of interfacial water molecules by the presence of tin and rhodium. The presence of transition metals leads to a larger double layer region in these catalysts, which has been observed before (Ribeiro et al. 2008, Teran et al. 2012).

![Cyclic voltammetry](image)

Fig. 8.6a Cyclic voltammetry of Pt$_{100}$/C, Pt$_{50}$Sn$_{50}$/C, Pt$_{50}$Rh$_{50}$/C, Pt$_{50}$Sn$_{40}$Rh$_{10}$/C and Pt$_{50}$Sn$_{10}$Rh$_{40}$/C electrocatalysts in 0.5 M H$_2$SO$_4$ at room temperature with a scan rate of 50 mV/s

Fig. 8.6b shows the cyclic voltammograms of methanol oxidation under acidic conditions (1.0 M CH$_3$OH and 0.5 M H$_2$SO$_4$) catalyzed by Pt$_{100}$/C, Pt$_{50}$Sn$_{50}$/C, Pt$_{50}$Rh$_{50}$/C, Pt$_{50}$Sn$_{40}$Rh$_{10}$/C and Pt$_{50}$Sn$_{10}$Rh$_{40}$/C catalysts. All of the current values were normalized by the geometric surface area of the electrode used. The CV curves (Fig. 8.6b) depict the presence of a peak in the potential range of the positive sweep and another peak in the negative sweep. The peak in the positive sweep is associated with the methanol oxidation, and the peak in the negative sweep is related to the oxidation of carbonaceous intermediate products from
incomplete methanol oxidation. Table 8.2 summarizes the CV results of Pt$_{100}$/C, Pt$_{50}$Sn$_{50}$/C, Pt$_{50}$Rh$_{50}$/C, Pt$_{50}$Sn$_{40}$Rh$_{10}$/C and Pt$_{50}$Sn$_{10}$Rh$_{40}$/C electrocatalysts including the positive peak potentials and the corresponding peak current densities of MOR.

Table 8.2 CV results of Pt$_{100}$/C, Pt$_{50}$Sn$_{50}$/C, Pt$_{50}$Rh$_{50}$/C, Pt$_{50}$Sn$_{40}$Rh$_{10}$/C and Pt$_{50}$Sn$_{10}$Rh$_{40}$/C electrocatalysts at room temperature

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Scan rate 50 mV/s</th>
<th>Positive peak potential (V vs. Ag/AgCl)</th>
<th>Peak current density (mA/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt$_{100}$/C</td>
<td></td>
<td>0.94</td>
<td>9.93</td>
</tr>
<tr>
<td>Pt${50}$Rh${50}$/C</td>
<td></td>
<td>0.96</td>
<td>15.51</td>
</tr>
<tr>
<td>Pt${50}$Sn${50}$/C</td>
<td></td>
<td>0.95</td>
<td>17.63</td>
</tr>
<tr>
<td>Pt${50}$Sn${40}$Rh$_{10}$/C</td>
<td></td>
<td>0.94</td>
<td>22.29</td>
</tr>
<tr>
<td>Pt${50}$Sn${10}$Rh$_{40}$/C</td>
<td></td>
<td>0.92</td>
<td>25.92</td>
</tr>
</tbody>
</table>

The CV results show that pure Pt$_{100}$/C catalysts (Fig. 6b) do not behave as an appropriate anode for MOR due to its poisoning by strongly adsorbed intermediates such as CO (Vigier et al. 2004). However, the introduction of Sn and Rh promotes the electrocatalytic activity. The MOR starts at approximately 0.4 V on the Pt$_{50}$Sn$_{50}$/C electrode, while the onset potential on Pt$_{50}$Rh$_{50}$/C was noted at 0.4 V vs. Ag/AgCl. This observation can be explained by the more pronounced oxophilic character of tin at low potentials in comparison with rhodium (Spinace et al. 2010, Teran et al. 2012, Colmati et al. 2008). Furthermore, the presence of both co-catalysts, Rh and Sn, significantly reduced the onset potential to approximately 0.3 V vs. Ag/AgCl and raised the current density at the Pt$_{50}$Sn$_{40}$Rh$_{10}$/C and Pt$_{50}$Sn$_{10}$Rh$_{40}$/C electrocatalyst. The superior activity of the Pt$_{50}$Sn$_{10}$Rh$_{40}$/C electrocatalyst can be attributed to the modification of electronic properties of platinum and to the presence of oxide species resulting in a combination of electronic effect and
bifunctional mechanism, as well assumed for various Pt-based electrocatalysts (Hamnett et al. 1997, Vielstich et al. 2003, Zhou et al. 2004). The first electro-oxidation peak of methanol on Pt$_{50}$Sn$_{50}$/C is at 0.95 V (vs. Ag/AgCl), which is 30 mV higher than that of Pt$_{50}$Sn$_{10}$Rh$_{40}$/C. The current density at the first peak of ethanol electro-oxidation on Pt$_{50}$Sn$_{10}$Rh$_{40}$/C is 25.92 mA/cm2 which is higher than that on Pt$_{50}$Sn$_{50}$/C with a difference of 8.29 mA/cm2, but less than that of Pt$_{50}$Sn$_{40}$Rh$_{10}$/C. Again, the ternary compositions (Pt$_{50}$Sn$_{10}$Rh$_{40}$/C) presented much higher current densities than the binary catalysts, indicating that the activity of the ternary electrocatalysts toward MOR was much better than that of the binary compositions.

Fig. 8.6b Cyclic voltammetry of Pt$_{100}$/C, Pt$_{50}$Sn$_{50}$/C, Pt$_{50}$Rh$_{50}$/C, Pt$_{50}$Sn$_{40}$Rh$_{10}$/C and Pt$_{50}$Sn$_{10}$Rh$_{40}$/C electrocatalysts in 0.5 M H$_2$SO$_4$ and 1.0 M methanol at room temperature at a scan rate of 50 mV/s

8.3.2.2 Chronoamperometry (CA)

The Pt$_{100}$/C, Pt$_{50}$Sn$_{50}$/C, Pt$_{50}$Rh$_{50}$/C, Pt$_{50}$Sn$_{40}$Rh$_{10}$/C and Pt$_{50}$Sn$_{10}$Rh$_{40}$/C electrocatalyst performances for methanol oxidation were studied by chronoamperometry (CA) at 0.4 V vs Ag/AgCl for 1000 s to evaluate both the electrocatalytic activity of the catalysts and the
poisoning of the active surface under continuous operation conditions. Fig. 8.7 shows the representative chronoamperograms obtained for the different electrocatalysts whose current densities were normalized by Pt mass. During the first 5 min, a sharp decrease in the current density. Followed by relative stabilization was noted. This occurs because the active sites were initially free from the adsorbed/oxidized methanol molecules. However, as the reaction proceeds, the adsorption rate of a new methanol molecule depends on the availability of the catalyst active site. This reaction is metal-dependent and proceeds faster (high current density) in the case of metals with a good ability to oxidize the intermediate species responsible for poisoning of the catalytic sites (CO) (Ribeiro et al. 2008). Thus, the surface becomes unstable, and the phenomena such as crystallization, segregation of the metal surface, and agglomeration of particles may occur to create new catalytic sites.

![Fig. 8.7 Chronoamperometry of Pt₁₀₀/C, Pt₅₀Sn₅₀/C, Pt₅₀Rh₅₀/C, Pt₅₀Sn₄₀Rh₁₀/C and Pt₅₀Sn₁₀Rh₄₀/C electrocatalysts at the room temperature](image)

The latter are quickly poisoned, thereby contributing to the continuous decrease in the current (Radmilovic et al. 1995). The compositions Pt₁₀₀/C, Pt₅₀Sn₅₀/C, Pt₅₀Rh₅₀/C,
Pt_{50}Sn_{40}Rh_{10}/C and Pt_{50}Sn_{10}Rh_{40}/C gave rise to extremely rapid rates of poisoning of the catalytic sites, resulting in a very low activity. However, ternary material (Pt_{50}Sn_{10}Rh_{40}/C) had a good ability to overcome catalyst poisoning, thus furnishing a high current density (Spinace et al. 2010).

The ternary Pt_{50}Sn_{10}Rh_{40}/C and Pt_{50}Sn_{40}Rh_{10}/C electrocatalysts demonstrated higher current than the binary Pt_{50}Sn_{50}/C and Pt_{50}Rh_{50}/C electrocatalysts. Higher current obtained for the ternary electrocatalysts may be explained by the operation of a beneficial synergistic effect between Sn and Rh, which may indicate an increase in the structural defects or roughness, making the ternary electrocatalysts better candidates for MOR. Furthermore, the addition of Rh to the Pt–Sn alloy electrocatalysts can lead to an increase in the surface oxophilic character, thus increasing the Sn–O bond strength and the acidity of the Sn–OH sites, favoring the bifunctional character of MOR (Spinace et al. 2010). The beneficial effect of Rh addition has been reported earlier for Pt–Sn/C and Pt–Ru/C catalysts. Indeed, significant improvements in methanol oxidation were observed (Spinace et al. 2010, Teran et al. 2012, Colmati et al. 2008). These observations suggest that the performance of Pt–Sn–Rh/C electrocatalysts depends greatly on its atomic ratios and its preparation.

8.3.3 Single Cell Performance

The Pt_{100}/C, Pt_{50}Sn_{50}/C, Pt_{50}Rh_{50}/C, Pt_{50}Sn_{40}Rh_{10}/C and Pt_{50}Sn_{10}Rh_{40}/C catalysts were evaluated as anode catalysts for MOR by single MLMFC. The polarization and power density curves of different catalyst are presented in Fig. 8.8. When Pt_{100}/C was used as the anode catalyst, the performance of MLMFC was found to be poor. The open-circuit potential (OCP) of Pt_{100}/C was 0.53 V, which is far less than that of the reversible OCP (1.145 V) (Cunha et al. 2011), which can be attributed mainly to the poor catalytic activity toward MOR. The results of MLMFC adapting to different catalysts are summarized in Table 8.3.
When the current was normalized to the geometric area of a single cell, it was observed that the cell performance of the Pt$_{50}$Sn$_{10}$Rh$_{40}$/C catalyst was better than that of other catalysts. In the low-current discharging region, the power drawn from a single cell was almost the same for all catalysts, except for Pt$_{50}$Rh$_{50}$/C, and Pt$_{100}$/C. However, as the voltage reached approximately 0.3 V, Pt$_{50}$Sn$_{10}$Rh$_{40}$/C started drawing more current compared to others. The OCP for Pt$_{50}$Sn$_{50}$/C catalyst was 0.64 V lower than that for Pt$_{50}$Sn$_{10}$Rh$_{40}$/C (0.72 V). In addition, a rapid initial fall in the cell voltage was noted for all catalysts, which was due to the slow initial MOR reaction at the electrode surface. After an initial drop of 0.5 V, the change in the slope of the polarization curve for Pt$_{50}$Sn$_{10}$Rh$_{40}$/C, and it started drawing more current. This event can be attributed to the more effective catalytic ability of Pt$_{50}$Sn$_{10}$Rh$_{40}$/C, once the MOR reaction is initiated. Based on the peak power density drawn from a single cell, Pt$_{50}$Sn$_{10}$Rh$_{40}$/C is the best anode catalyst with a peak power density value of 32.94 mW/cm2.

Table 8.3 Summary of the performance of single fuel cell tests using 2 mg cm$^{-2}$ catalyst loading, 40 wt% catalyst on carbon

<table>
<thead>
<tr>
<th>Anode Catalysts</th>
<th>Open circuit voltage (V)</th>
<th>Maximum power density (mW/cm2)</th>
<th>Maximum Current density (mA/cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt$_{100}$/C</td>
<td>0.53</td>
<td>4.43</td>
<td>43.61</td>
</tr>
<tr>
<td>Pt${50}$Rh${50}$/C</td>
<td>0.58</td>
<td>16.31</td>
<td>110.23</td>
</tr>
<tr>
<td>Pt${50}$Sn${50}$/C</td>
<td>0.64</td>
<td>22.84</td>
<td>159.44</td>
</tr>
<tr>
<td>Pt${50}$Sn${40}$Rh$_{10}$/C</td>
<td>0.66</td>
<td>30.25</td>
<td>192.62</td>
</tr>
<tr>
<td>Pt${50}$Sn${10}$Rh$_{40}$/C</td>
<td>0.72</td>
<td>32.94</td>
<td>224.02</td>
</tr>
</tbody>
</table>
The addition of Sn clearly enhanced the MOR reaction as observed from the polarization curves that the electrocatalysts containing Sn showed higher open circuit voltage (OCV). Pt$_{50}$Sn$_{50}$/C, Pt$_{50}$Sn$_{40}$Rh$_{10}$/C and Pt$_{50}$Sn$_{10}$Rh$_{40}$/C showed OCV of 0.64 V, 0.66 V and 0.72 V, respectively, in comparison to Pt$_{50}$Rh$_{50}$/C and Pt$_{100}$/C, which showed OCV of 0.58 V and 0.53 V, respectively. The comparison of both the bimetallic catalysts showed a peak power density of Pt$_{50}$Sn$_{50}$/C (22.84 mW/cm2), which was higher than that of Pt$_{50}$Rh$_{50}$/C (16.31 mW/cm2).

The catalytic activity was attributed to the synergy between the three constituents of the electrocatalyst, where SnO$_2$ strongly adsorbs water and precludes the Pt and Rh sites from reacting with H$_2$O to M–OH, making Pt and Rh sites available for methanol oxidation. It is concluded that the SnO$_2$ reacts with H$_2$O and provides OH species to oxidize the dissociated CO at Rh sites, while Pt facilitates methanol dehydrogenation. Thus, the good activity for methanol oxidation of the Pt–Sn–Rh/C electrocatalysts increases the cell performance. It can
be observed that, for Pt$_{50}$Rh$_{50}$/C, Pt$_{50}$Sn$_{40}$Rh$_{10}$/C and Pt$_{50}$Sn$_{10}$Rh$_{40}$/C combination containing 50, 10 and 40 atomic ratios of Rh, the peak power densities were 16.31, 30.25 and 32.94 mW/cm2, respectively. This observation indicates that the presence of only a small amount of Sn in the Pt–Sn–Rh/C catalyst aids in the MOR. Even under working conditions of the fuel cells, the best performance is achieved with lower Sn atomic ratios (near 10 wt%). Similar results were observed by Ribeiro et al. (Ribeiro et al. 2007) for methanol oxidation by using catalysts prepared by the Pechini–Adams modified method.

References

