Appendix B

Standard Graphs and List of Primers

Fig. 1: B.S.A. Standard Curve for Protein Estimation by Bradford Method. BSA Standards containing 10 – 100 μg protein were assayed by Bradford Assay. The curve was plotted using mean values from two different experiments, along with standard deviation bars.

Fig. 2: Nitrate standard curve for nitrate estimation by Snell and Snell method. NaNO₃ Standards containing 20 – 100 nmoles/ml nitrate were assayed by Snell and Snell method. The curve was plotted using mean values from three different experiments, along with standard error bars.
Fig. 3: Nitrite Standard Curve for Nitrite Estimation by Snell & Snell Method.
The curves were plotted for different range of nitrite concentrations, using mean values from three different experiments, along with standard error bars.
List of primers used in this study:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Primer Name</th>
<th>Sequence (5’- 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>narF1</td>
<td>ATGGTNTGRGTCAAAAAGNGCAAC</td>
</tr>
<tr>
<td>2</td>
<td>narF2</td>
<td>ACAAACCAACGCGATGGGAG</td>
</tr>
<tr>
<td>3</td>
<td>narR1</td>
<td>CGARTGATTNTRNCCCATNGACC</td>
</tr>
<tr>
<td>4</td>
<td>narR2</td>
<td>CCCCAGTGATNGGNACAAANA</td>
</tr>
<tr>
<td>5</td>
<td>NR F1</td>
<td>TGYCCTAYTGYGGNGT</td>
</tr>
<tr>
<td>6</td>
<td>NR F2</td>
<td>ACNNGYCARCCYAYGNCATG</td>
</tr>
<tr>
<td>7</td>
<td>NR R1a</td>
<td>CARTGCATNGGNAYRAA</td>
</tr>
<tr>
<td>8</td>
<td>NR R1b</td>
<td>NGTNGCNCYTTTNACRCANAC</td>
</tr>
<tr>
<td>9</td>
<td>NR R1c</td>
<td>ACDGCRCARGCTTTTARTTCYGGTT</td>
</tr>
<tr>
<td>10</td>
<td>NR R2</td>
<td>CKHCKYTCNSWRRTNGTCAT</td>
</tr>
<tr>
<td>11</td>
<td>Partial phyco F</td>
<td>GATTGTAGCCTTTGGCTTC</td>
</tr>
<tr>
<td>12</td>
<td>Partial phyco R</td>
<td>GTGCTGCTTTAGGAAACGAC</td>
</tr>
<tr>
<td>13</td>
<td>Nar synecho F</td>
<td>CTGAGCCGCACCCCTTTTAC</td>
</tr>
<tr>
<td>14</td>
<td>Nar synecho R</td>
<td>GTGGCTCCTGTACTCACAAG</td>
</tr>
<tr>
<td>15</td>
<td>OSCILLA NAR B F</td>
<td>GAAATCCACGCGGATGATAG</td>
</tr>
<tr>
<td>16</td>
<td>OSCILLA NAR B R</td>
<td>GTGTCACGTGACCCGTAGAG</td>
</tr>
<tr>
<td>17</td>
<td>Arthrospira RNAF F</td>
<td>AAGTCATCATGCCCCCTTACG</td>
</tr>
<tr>
<td>18</td>
<td>Arthrospira RNAF R</td>
<td>TAGCCATTCCTCTTCTCATGC</td>
</tr>
<tr>
<td>19</td>
<td>(nrtP) F</td>
<td>ATGGYTGCCCCTCACGTTCC</td>
</tr>
<tr>
<td>20</td>
<td>(nrtP) R</td>
<td>AAATGCTGCCACCAGTATGC</td>
</tr>
<tr>
<td>21</td>
<td>NR 4 F</td>
<td>GATCACTGGGCTTGGGAAGACG</td>
</tr>
<tr>
<td>22</td>
<td>NR 4 R</td>
<td>CTAGGGCTGTTGGTCTTCG</td>
</tr>
<tr>
<td>23</td>
<td>NrtP F1</td>
<td>TGCTAACCAGATTATGCTTTT</td>
</tr>
<tr>
<td>24</td>
<td>NrtP R1</td>
<td>ATCCFCTCTGGATGGTGTCAGC</td>
</tr>
<tr>
<td>25</td>
<td>NrtP F2</td>
<td>ATTCTAACCAGATAATGGCTTTT</td>
</tr>
<tr>
<td>26</td>
<td>NrtP R2</td>
<td>TTCTTCTTGGTGATGGTGCAGC</td>
</tr>
<tr>
<td>27</td>
<td>NrtP R3 – F2</td>
<td>TTTGATGATGGTCAGCAAAA</td>
</tr>
<tr>
<td>28</td>
<td>Oc NarB F1</td>
<td>CAAGGGTTATCCCGTTCGGA</td>
</tr>
<tr>
<td>29</td>
<td>Oc NarB R1-R4</td>
<td>ACTAATTGAAACGCGACAGGC</td>
</tr>
<tr>
<td>30</td>
<td>Oc NarB F2</td>
<td>CGTACTGTTGGTGTGGCTGT</td>
</tr>
<tr>
<td>31</td>
<td>Oc NarB R2-R3</td>
<td>GTGAGAGAATCGGGACAA</td>
</tr>
<tr>
<td>32</td>
<td>Oc NarB F3</td>
<td>TGTCCTGACTGTGGTGTTGG</td>
</tr>
<tr>
<td>33</td>
<td>Oc NarB F4</td>
<td>GGGGCAAATCTGTAAATCGAG</td>
</tr>
<tr>
<td>34</td>
<td>GSFI</td>
<td>GAGCAGAAACRCGATGG</td>
</tr>
<tr>
<td>34</td>
<td>GSR1</td>
<td>TTAACGACATGCGAGGAACC</td>
</tr>
<tr>
<td>35</td>
<td>FDNiR F1</td>
<td>ATATCCATGTTCACAAAGCCA</td>
</tr>
<tr>
<td>36</td>
<td>FDNiRR1</td>
<td>CGCATGGAGAAACAAATCAC</td>
</tr>
<tr>
<td>37</td>
<td>FDNiR F2</td>
<td>AACCGTTATCAGCCACTTGC</td>
</tr>
<tr>
<td>38</td>
<td>FDNiRR2</td>
<td>ATGACGCGGTATTACGGTGG</td>
</tr>
<tr>
<td>39</td>
<td>FDNiRR2a</td>
<td>GGGAAGCCATGGATAAAACC</td>
</tr>
<tr>
<td>40</td>
<td>FDNiR3</td>
<td>TCATGTCTCTACTTTGCC</td>
</tr>
<tr>
<td>41</td>
<td>FDNiRR3</td>
<td>GATGGGATTAGCCGTATAAGACG</td>
</tr>
<tr>
<td>42</td>
<td>NRTF1</td>
<td>CCTAATTGCACGCACTTCGATA</td>
</tr>
<tr>
<td>43</td>
<td>NRTR1</td>
<td>AGGCTTCTTAGAGGCTTGG</td>
</tr>
<tr>
<td>44</td>
<td>NRT1F1</td>
<td>TTTATGCGTTAACGGACGC</td>
</tr>
<tr>
<td>45</td>
<td>NRT1R1</td>
<td>CCATCATAGAAAGGTCTGG</td>
</tr>
<tr>
<td>46</td>
<td>NRiF1</td>
<td>CGATGCGATCCCGTACATT</td>
</tr>
<tr>
<td>47</td>
<td>NRiR1</td>
<td>CCCCAGATCTCATCCGTTTTG</td>
</tr>
<tr>
<td>48</td>
<td>GOGF1</td>
<td>GTCCGAACCCAAAACCTCAGA</td>
</tr>
<tr>
<td>49</td>
<td>GOGR1</td>
<td>AGTGCAGATCCCTATGGTC</td>
</tr>
<tr>
<td>50</td>
<td>GOGF2</td>
<td>CGGCTGCTGATAGACTATCC</td>
</tr>
<tr>
<td>51</td>
<td>GOGR2</td>
<td>TCACAGTGTCCCACTCCAAA</td>
</tr>
<tr>
<td>52</td>
<td>GOGF3</td>
<td>GTTGGGGTGGATTTATCCGAT</td>
</tr>
<tr>
<td>53</td>
<td>GOGR3</td>
<td>GTTGGAGGTTGATCCGAAATC</td>
</tr>
<tr>
<td>54</td>
<td>GOGF4</td>
<td>GCCCTGTTGAGGCTAGTTTA</td>
</tr>
<tr>
<td>55</td>
<td>GOGR4</td>
<td>GGAAAGATCCATCCAGCTCA</td>
</tr>
<tr>
<td>56</td>
<td>GSF2</td>
<td>TTAGGAATCGTACTGAGAGGG</td>
</tr>
<tr>
<td>57</td>
<td>GSR2</td>
<td>TTATCGAGATGGCAGAACC</td>
</tr>
<tr>
<td>58</td>
<td>RNANRF</td>
<td>GTCCCTACTGCGGTGTTGG</td>
</tr>
<tr>
<td>59</td>
<td>RNANRR</td>
<td>ATCAGCGCCCATAGTATGC</td>
</tr>
<tr>
<td>60</td>
<td>RNANiRF</td>
<td>TCATGACCTACTTTCCGCG</td>
</tr>
<tr>
<td>61</td>
<td>RNANiRR</td>
<td>CTTTGAATCTCGATCGTCTTG</td>
</tr>
<tr>
<td>62</td>
<td>RNAGSF</td>
<td>GAGGACGTAAACCCATGG</td>
</tr>
<tr>
<td>63</td>
<td>RNAGSR</td>
<td>TACCTCGCCTTGGAGCTAT</td>
</tr>
<tr>
<td>64</td>
<td>RNAGGF</td>
<td>GTTGGGTGAGTTTACGG</td>
</tr>
<tr>
<td>65</td>
<td>RNAGGR</td>
<td>GGATAGTCTTACGGAGG</td>
</tr>
</tbody>
</table>

Where, N - nucleotide, R - purines [AG], Y - pyrimidines [CT]

Both forward and reverse primers are written in 5'-3' direction. The symbols stand for: R=A/G, Y=C/T, M=A/C, K=G/T, W=A/T, S=C/G, B=C/G/T, D=A/G/T, H=A/C/T, V=A/C/G, N=A/C/G/T.