ACKNOWLEDGEMENT

“Gratitude is the inward feeling of kindness received.
Thankfulness is the natural impulse to express that feeling”

First and foremost, I would like to thank my greatest teacher of all: God. I would like to thank my beloved guide Dr. M. Srinivasan Professor, CAS in Marine Biology, Annamalai University, for filling up my mind with matters of knowledge. I thank him for his diligent guidance, persistent effort, precious suggestions and constant encouragement throughout my research. I thank him for all his care and affection.

I am extremely grateful to Prof. K. Kathiresan, Dean and Director, CAS in Marine Biology, Annamalai University, for his valuable advice in the accomplishment of this study.

My sincere thanks to Prof. T. Balasubramanian, former Dean and Director, CAS in Marine Biology, Annamalai University, for giving me a great opportunity to carry out research in this prestigious centre.

I am extremely grateful to Prof. L. Kannan, former Vice Chancellor, Thiruvalluvar University. I must thank Prof. S.A. Ajmal Khan, Prof. N. Veerapan, Prof. A. Shanmugam and Prof. P.S. Lyla for their help and advice. I also thank Dr. P. Anantharaman, Associate Professor for his support and encouragement. I would like to thank Dr. S. Saravanan, Assistant Professor, CAS in Marine Biology, Annamalai University, for his valuable evaluation of the reference section in this thesis. I thank all the Professors, Associate Professors, Assistant Professors, members of Instrumentation laboratory, Library, Hostel and Non-teaching staff of CAS in Marine Biology, Annamalai University for their co-operation to complete my thesis.

My special thanks to Dr. S.T. Somasundaram, Associate professor, CAS in Marine Biology, Annamalai University, for providing all the necessary facilities to carry out my research. I am deeply gratified for his invaluable guidance, meticulous effort in procurement of research materials, scholarly advice and freedom, priceless comments and discussion in every phase of my research.

I thank the Department of Biotechnology (DBT) for their financial assistance during my study period.
I would like to thank my colleagues, Dr. K. Indhira, Ms. N. Jayaprabha, Mr. M.P. Arulmoorthy, Mr. A.C. Ratheish, and Mrs. E. Karunya for their co-operation. I also thank all other friends outside CAS who helped me to do my work successfully. My sincere thanks to Dr. Sivagama sundari for her guidance, support and encouragement.

It’s my pleasure to thank my friends a lot. It is my fortune to have such friends for a lifetime. I limit, in not mentioning any of my friends name since there are many friends who helped me. I thank all my seniors and juniors for their support. Thanks a lot to all Research Scholars in CAS.

I thank my parents, Mr. Gunasekar and Mrs. Kala Gunasekar, my sister Mrs. Chilambarasi Balamurugan, my sisters beloved son Nithin, My brother Mr. G. Thinakaran and in law Mrs. Sindhu and all my family members for encouraging me to strive to do my best. I thank them for everything. I thank my mother in law and father in law for their support as well.

Finally, I would like to thank my husband Dr. R. Vignesh and my little princess V. Mahathi for their understanding which made me work better. Their support and encouragement is highly appreciable which made this thesis meaningful.

ANBARASIL.G
<table>
<thead>
<tr>
<th>S.No.</th>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>List of Figures</td>
<td>3</td>
</tr>
<tr>
<td>B.</td>
<td>List of Plates</td>
<td>iii</td>
</tr>
</tbody>
</table>

Chapter 1

1. **General Introduction**

 1.1 Salinity Stress tolerances
 1.2 Halophytes
 1.3 Chenopodiaceae
 1.4 Phytohormones
 1.5 Abscisic Acid
 1.6 **Objectives of the study**

Chapter 2

2. **Review of literature**

 2.1 Molecular identification with 18SrRNA
 2.2 Threshold concentration of salinity and abscisic acid on germination
 2.3 Abscisic acid pretreatment effects on growth and osmolyte accumulation
 2.4 Abscisic acid pretreatment on the antioxidant activity
 2.5 Proteomic approaches on identification of salt tolerant protein
 2.6 *In-silico* analysis salt responsive protein of SKP1-like protein 1A

Chapter 3

3. **Description of the study area and species**

 3.1 Description of the study area
 3.2 Description of study species
 3.2.1 Halophytes
 3.2.2 Characteristics of Halophytes
 3.2.3 *Suaeda maritima*
 3.2.4 Classification

Chapter 4

4. **Molecular identification and phylogenetic analysis of *Suaeda maritima* using 18S rRNA**

 4.1 Introduction
 4.2 **Materials and Methods**
 4.2.1 Isolation of Genomic DNA
 4.2.2 Quantitation and Quality Assessment of DNA
4.2.3 Polymerase Chain Reaction ... 34
4.2.4 Visualization of PCR Product ... 35
4.2.5 Purification of PCR product ... 35
4.2.6 Sequencing of Purified 18S rRNA Gene Segment 35
4.2.7 Cycle Sequencing ... 36
4.2.8 Electrophoresis and Data Analysis .. 36
4.2.9 Sequence analysis ... 37
4.2.10 Multiple sequence alignment using Clustal W 37
4.2.11 Phylogenetic tree construction using MEGA 37
4.2.12 Bootstrapping .. 38

4.3 Results ... 39
4.3.1 Wet Lab methodology .. 39
4.3.2 Electrophoresing PCR amplicons .. 39
4.3.3 Sequence analysis ... 40
4.3.4 Dry lab methodologies .. 41
4.3.5 Accession numbers ... 42
4.3.6 Multiple Sequence Alignments ... 42
4.3.7 Evolutionary relationships of taxa by Neighborhood joining Method 43

4.4 Discussion ... 45

Chapter 5

5. Prediction of threshold concentration of salinity and abscisic acid on germination, water content and solute composition of Suaeda maritima ... 47

5.1 Introduction ... 47
5.2 Materials and Methods ... 49
5.2.1 Sample preparation for NaCl and ABA treatment 49
5.2.2 Estimation of Water Content (WC) .. 51
5.2.3 Estimation of chlorophyll content ... 52
5.2.4 Estimation of proline content .. 52
5.2.5 Estimation of Glycine betaine content 53
5.2.6 Leaf Protein extraction and estimation 53
5.2.7 SDS-PAGE protein resolution .. 54

5.3 Results ... 55
5.3.1 Effect of salinity on seed germination 55
5.3.2 Effect of salinity on seed protein profiling 55
5.3.3 Effect of salinity on time dependent changes of leaf protein profiling 56
5.3.4 Effect of exogenous ABA on Water content 57
5.3.5 Effect of exogenous ABA on protein content 58
5.3.6 Effect of exogenous ABA on chlorophyll content 59
5.3.7 Effect of exogenous ABA on proline and Glycine betaine content 59
5.3.8 Effect of exogenous ABA on leaf protein profiling 61

5.4 Discussion ... 62
Chapter 6

6. Effect of exogenous abscisic acid pretreatment on growth, water relations, organic and inorganic osmolyte accumulation in the halophyte *Suaeda maritima* under salinity stress

6.1 Introduction

6.2 Materials and Methods

6.2.1 Collection of plant seeds and growth condition parameters
6.2.2 Fresh and Dry Weight
6.2.3 Relative Water Content (RWC)
6.2.4 Ion determination
6.2.5 Chlorophyll content
6.2.6 Total free amino acids
6.2.7 Lipid peroxidation
6.2.8 Proline content
6.2.9 Glycine betaine content

6.3 Results

6.3.1 Effect of exogenous ABA on Fresh and Dry weight
6.3.2 Effect of exogenous ABA on Relative Water Content
6.3.3 Effect of exogenous ABA on Ion determination
6.3.4 Effect of exogenous ABA on Chlorophyll content
6.3.5 Effect of exogenous ABA on Total free amino acid
6.3.6 Effect of exogenous ABA on Lipid peroxidation
6.3.7 Effect of exogenous ABA on Proline content
6.3.8 Effect of exogenous ABA on Glycine betaine content

6.4 Discussion

Chapter 7

7. Impact of exogenous abscisic acid pretreatment on the antioxidant activity of *Suaeda maritima* under salinity stress

7.1 Introduction

7.2 Materials and Methods

7.2.1 Extraction and analysis of antioxidant enzymes
7.2.2 Superoxide Dismutase Assay
7.2.3 Catalase assay
7.2.4 Peroxidase assay
7.2.5 Ascorbate Peroxidase assay
7.2.6 Glutathione S Transferase assay

7.3 Results

7.3.1 Effect of exogenous ABA on SOD activity under salinity stress
7.3.2 Effect of exogenous ABA on CAT activity under salinity stress........ 93
7.3.3 Effect of exogenous ABA on POX activity under salinity stress......... 94
7.3.4 Effect of exogenous ABA on APX activity under salinity stress........ 95
7.3.5 Effect of exogenous ABA on GST activity under salinity stress......... 96

7.4 Discussion... 97

Chapter 8

8. Proteomic approaches on isolation and identification of salt tolerance proteins regulated by abscisic acid pretreatment under salinity stress in the halophytic plant Suaeda maritima ... 100

8.1 Introduction.. 100

8.2 Materials and Methods... 104
8.2.1 Total protein extraction and estimation....................................... 104
8.2.2 Quantification of Proteins.. 104
8.2.3 Protein profiling through SDS-PAGE.. 104
8.2.4 Protein Separation via isoelectric focusing......................... 107
 8.2.4.1 One dimensional electrophoresis..................................... 107
 8.2.4.2 Two dimensional electrophoresis.................................... 107
8.2.5 Protein identification by MALDI TOF/TOF MS...................... 107
 8.2.5.1 Washing of gel pieces.. 108
 8.2.5.2 Reduction and alkylation.. 108
 8.2.5.3 In gel digestion.. 108
 8.2.5.4 Extraction of peptides.. 109
 8.2.5.5 MS analysis and protein search.................................... 109
 8.2.5.6 Peptide mass finger printing..................................... 109
 8.2.5.7 Mascot search.. 110

8.3 Results .. 111
8.3.1 Leaf protein profiling through SDS-PAGE............................. 111
8.3.2 Leaf proteomic responses... 112
8.3.3 Protein spot identification.. 117

8.4 Discussion... 119

Chapter 9

9. In-silico prediction of structural and functional aspects of salt responsive protein of SKP1-like protein 1A... 122

9.1 Introduction... 122

9.2 Materials and methods... 124
 9.2.1 Sequence analysis.. 124
 9.2.2 MOTIF search... 124
 9.2.3 Conserved domain search... 124
 9.2.4 InterPro based protein signature recognition analysis.......... 124
9.2.5 ProtParam based physical and chemical computation in protein sequence ... 124
9.2.6 Secondary structure prediction ... 125
9.2.7 Tertiary structure prediction .. 125
 9.2.7.1 Homology modeling .. 125
 9.2.7.2 Model structure validation .. 125
 9.2.7.3 Structure visualization .. 125
9.3 Results and Discussion .. 126
 9.3.1 Sequence analysis .. 126
 9.3.2 MOTIF search ... 126
 9.3.3 Conserved domain search .. 127
 9.3.4 Integrated protein signature .. 127
 9.3.5 Physicochemical properties of the protein 128
 9.3.6 Secondary structure prediction .. 131
 9.3.7 Tertiary structure prediction .. 132
 9.3.8 Tertiary structure of SKP1-like 1A 136
10. Summary and Conclusion .. 137
11. References ... 144
12. List of Publications ... 184
A. List of Figures:

Figure 1: Geographical coordinates and location of the sampling site
Figure 2: Plant of Suaeda maritima from the collection area
Figure 3: Scientific classification of the plant
Figure 4: Genomic DNA isolation of the study species
Figure 5: The electropherogram obtained after electrophoresis of the PCR amplicons
Figure 6: Multiple Sequence Alignment
Figure 7: Evolutionary relationships of taxa by NJ Method
Figure 8: Seeds germinated in petridishes.
Figure 9a: Fluorescent microscopic view of control seeds
Figure 9b: Fluorescent microscopic view of seeds treated with 300mM NaCl
Figure 10: Plants under Green house condition
Figure 11: Hydroponic condition of growth chamber
Figure 12: Germination percentage at different concentration of NaCl
Figure 13: The SDS-PAGE analysis of seeds protein profiling of varying concentration of salt
Figure 14: Protein profiling of leaf protein after treatment with threshold concentration of NaCl (300mM) at different time intervals (4hr -72hr)
Figure 15: Effect of different concentration of exogenous ABA on Leaf and Root % of water content
Figure 16: Effect of different concentration of exogenous ABA on protein content
Figure 17: Effect of different concentration of exogenous ABA on chlorophyll content
Figure 18: Effect of different concentration of exogenous ABA on proline content
Figure 19: Effect of different concentration of exogenous ABA on Glycine betaine
Figure 20: Leaf protein profiling of 10% SDS-PAGE showed differential expression after treatment with different concentration of ABA.
Figure 21a: Individual and combined effects of salinity, ABA on leaf fresh weight
Figure 21b: Individual and combined effects of salinity, ABA on leaf dry weight
Figure 21c: Individual and combined effects of salinity, ABA on root fresh weight
Figure 21d: Individual and combined effects of salinity, ABA on root dry weight
Figure 22a: Individual and combined effects of salinity, ABA on leaf Relative Water Content
Figure 22b: Individual and combined effects of salinity, ABA on root Relative Water Content
Figure 23a: Individual and combined effects of salinity, ABA on leaf cations content
Figure 23b: Individual and combined effects of salinity, ABA on root cations content
Figure 24a: Individual and combined effects of salinity, ABA on chlorophyll “a” content
Figure 24b: Individual and combined effects of salinity, ABA on chlorophyll “b” content
Figure 24c: Individual and combined effects of salinity, ABA on total chlorophyll content
Figure 25: Individual and combined effects of salinity, ABA on total free amino acid content
Figure 26: Individual and combined effects of salinity, ABA on MDA content
Figure 27: Individual and combined effects of salinity, ABA on proline content

Figure 28: Individual and combined effects of salinity, ABA on Glycine Betaine content

Figure 29: Individual and combined effect of salinity and ABA on SOD activity

Figure 30: Individual and combined effect of salinity and ABA on CAT activity

Figure 31: Individual and combined effect of salinity and ABA on POX activity

Figure 32: Individual and combined effect of salinity and ABA on APOX activity

Figure 33: Individual and combined effect of salinity and ABA on GST activity

Figure 34: Leaf protein profile of leaf under control, ABA, drought, ABA treatment under drought stress. lane M: protein marker, lane C: control, lane 1: 50µM ABA, lane 2: 300mM NaCl, lane 3: ABA+NaCl. All lanes were loaded with 20µg protein.

Figure 35: 2-DE of leaf protein profile of *S.maritima* 4-7IPG strip (a) Control (b) 50µM ABA (c) 300mM NaCl (d) 50µM ABA + 300mM NaCl. Duplicates were performed for each sample.

Figure 36: A portion of representative 2-DE gel showing spots differentially expressed in leaves from *S.maritima* plants grown in the presence of 50µM ABA as compared to the control (C). The spots identified are marked with arrows.

Figure 37: A portion of representative 2-DE gel showing spots differentially expressed in leaves from *S.maritima* plants grown in the presence of 300mM NaCl (N) as compared to the control (C). The spots identified are marked with arrows.

Figure 38: A portion of representative 2-DE gel showing spots differentially expressed in leaves from *S.maritima* plants grown in the presence of 50µM ABA with 300mM NaCl (N+A) as compared to the control (C). The spots identified are marked with arrows.

Figure 39: A portion of representative 2-DE gel showing spots differentially expressed in leaves from *S.maritima* plants grown in the presence of 50µM ABA with 300mM NaCl (N+A) as compared to (N). The spots identified are marked with arrows.

Figure 40: The mass spectrometric profile of peptide was obtained by MALDI-TOF/TOF/MS analysis.

Figure 41: Mascot Search Results and Mascot score histogram of protein spot

Figure 42: Predicted motif search of SKP1-like protein

Figure 43: Conserved domain search (CDD) using BLAST for predicted SKP1-like protein

Figure 44: Integrated protein signature analysis for predicted SKP1-like protein

Figure 45: Ramachandran analysis of the backbone dihedral angles Psi (j) and Phi (s) for the three template models PDB ID 3ogm, 2ass and 3ogl validated with ProCheck program. Red region represents the most favored region, yellow = allowed region, light yellow = generously allowed region, white = disallowed region.
Figure 46a: The plot shows separate Ramachandran plots for different amino acid types for model 1 SKP1-like protein1A protein sequence. The darker the shaded area on each plot, the more favorable the region. The red numbers above the data points are the residue-numbers lying in unfavorable regions of the plot.

Figure 46b: The plot shows separate Ramachandran plots for different amino acid types for model 2 SKP1-like protein1A protein sequence. The darker the shaded area on each plot, the more favorable the region. The red numbers above the data points are the residue-numbers lying in unfavorable regions of the plot.

Figure 46c: The plot shows separate Ramachandran plots for different amino acid types for model 3 SKP1-like protein1A protein sequence. The darker the shaded area on each plot, the more favorable the region. The red numbers above the data points are the residue-numbers lying in unfavorable regions of the plot.

Figure 47: Tertiary structure view of SKP1-like protein

B. List of Tables:

Table 1: Composition of reaction mixture for PCR
Table 2: Steps and conditions of thermal cycling for PCR
Table 3: Cycling protocol for sequencing reaction
Table 4: Quantitation of DNA
Table 5: Sequences Producing Significant Alignments from BLAST
Table 6: Top Sequences Producing Significant Alignments from BLAST
Table 7: Amino acid composition of SKP1 like protein 1A.
Table 8: Predicted secondary structure of SKP1 like protein 1A
Table 9: Percentage of residues falling in the core region of Ramachandran’s plot for the three template models of 1, 2 and 3 (PDB ID 3ogm, 2ass and 3ogl)