Chapter 4
Commuting traces of biderivations

4.1 Introduction

A mapping $D : R \times R \rightarrow R$ is said to be symmetric if $D(x, y) = D(y, x)$ for all $x, y \in R$. A mapping $f : R \rightarrow R$ defined by $f(x) = D(x, x)$, where $D : R \times R \rightarrow R$ is a symmetric mapping is called trace of D. In 1980, Maksa [89] introduced the concept of a biderivation. A biadditive mapping $D : R \times R \rightarrow R$ is said to be a biderivation if for all $x, y \in R$, the mappings $y \mapsto D(x, y)$ and $x \mapsto D(x, y)$ are derivations of R. Later it was shown that symmetric biderivations are related to general solution of some functional equations. The notion of additive commuting mapping is closely connected with the notion of a biderivation. Every commuting additive mapping $f : R \rightarrow R$ gives rise to a biderivation. Linearizing $[f(x), x] = 0$ for all $x \in R$, we get $[f(x), y] = [x, f(y)]$ for all $x, y \in R$ and hence we note that the mapping $(x, y) \mapsto [f(x), y]$ is a biderivation on R (moreover all derivations appearing are inner).

Section 4.2 deals with the study of n-centralizing traces of symmetric biderivations of a semiprime ring. The main result is the following: Let R be a semiprime ring, I a nonzero ideal of R and n be a fixed positive integer. Let R be $n!$-torsion free for $n > 1$ and 2-torsion free for $n = 1$. Suppose there exists a symmetric biderivation $D : R \times R \rightarrow R$ such that the mapping $f : R \rightarrow R$ is n-centralizing on I, where f stands for the trace of D. Then f is n-commuting on I. Moreover we extend the
result for a Lie ideal of \(R \).

In section 4.3, we study symmetric generalized biderivations of prime rings. The notion of generalized symmetric biderivation was introduced by Nurcan in [13]. Let \(R \) be a ring and \(D : R \times R \to R \) be a biadditive map. A biadditive mapping \(\Delta : R \times R \to R \) is said to be a generalized biderivation if for every \(x \in R \), the map \(y \mapsto \Delta(x, y) \) is a generalized derivation of \(R \) associated with function \(y \mapsto D(x, y) \) for all \(x, y \in R \) as well as for every \(y \in R \), the map \(x \mapsto \Delta(x, y) \) is a generalized derivation of \(R \) associated with function \(x \mapsto D(x, y) \) for all \(x, y \in R \). The trace \(g \) of a symmetric generalized biderivation \(\Delta \) defined by \(g(x) = \Delta(x, x) \), satisfies \(g(x + y) = g(x) + g(y) + 2\Delta(x, y) \) for all \(x, y \in R \).

Recently in [117, Theorem 2] Yenigul et.al proved a result of Vukman [108, Theorem 4] for a two sided ideal \(I \) of a prime ring \(R \) which states that if there exist symmetric biderivations \(D_1 : R \times R \to R \) and \(D_2 : R \times R \to R \) such that \(D_1(d_2(x), x) = 0 \) for all \(x \in I \), where \(d_2 \) is the trace of \(D_2 \), then either \(D_1 = 0 \) or \(D_2 = 0 \). We obtain the result for a symmetric generalized biderivation \(\Delta \) with associated biderivation \(D \) of \(R \) with trace \(f \) satisfying \(\Delta(f(x), x) = 0 \) for all \(x \in I \) and conclude that either \(\Delta = 0 \) or \(R \) is commutative.

Finally we investigate the commutativity of a semiprime ring \(R \) satisfying various identities involving the trace \(f \) of the symmetric biadditive mapping \(D \) on \(R \).

4.2 \(n \)-centralizing traces of symmetric biderivations

Definition 4.2.1 (Symmetric mapping) A mapping \(D : R \times R \to R \) is said to be symmetric if \(D(x, y) = D(y, x) \) for all \(x, y \in R \).

Definition 4.2.2 (Biadditive mapping) A mapping \(D : R \times R \to R \) is called biadditive if it is additive in both arguments.
Definition 4.2.3 (Trace) A mapping $f : R \rightarrow R$ defined by $f(x) = D(x, x)$, where $D : R \times R \rightarrow R$ is a symmetric mapping is called the trace of D.

Remark 4.2.1

(i) The trace f of D satisfies the relation $f(x+y) = f(x) + f(y) + D(x, y) + D(y, x)$ for all $x, y \in R$.

(ii) If D is symmetric, then the trace f of D satisfies the relation $f(x+y) = f(x) + f(y) + 2D(x, y)$ for all $x, y \in R$.

Definition 4.2.4 (Biderivation) A biadditive mapping $D : R \times R \rightarrow R$ is said to be a biderivation on R if $D(xy, z) = D(x, z)y + xD(y, z)$ and $D(x, yz) = D(x, y)z + yD(x, z)$ for all $x, y, z \in R$.

Example 4.2.1 Let R be a ring and $\lambda \in Z(R)$, the centre of R. Then the mapping $(x, y) \mapsto \lambda[x, y]$ is a biderivation on R.

In 1987, Bell and Martindale [29] proved that if a semiprime ring R admits a derivation d which is nonzero on a nonzero left ideal I of R and centralizing on I, then R must contain a nonzero central ideal. Deng and Bell [49] proved the result for n-centralizing mappings. Now we prove the following:

Theorem 4.2.1 Let R be a semiprime ring and L be a nonzero square closed Lie ideal of R. Let n be a fixed positive integer. Let R be $n!$-torsion free for $n > 1$ and 2-torsion free for $n = 1$. Suppose there exists a symmetric biderivation $D : R \times R \rightarrow R$ such that the mapping $f : R \rightarrow R$ is n-centralizing on L, where f stands for the trace of D. Then f is n-commuting on L.

The following lemma due to Deng and Bell [49] is essential to prove our theorem.
Lemma 4.2.1 [49, Lemma 1] Let n be a positive integer and R be $n!$-torsion free semiprime ring. Let $f : R \to R$ be an additive map on R. For $i = 1, 2, \ldots, n$, let $F_i(x, y)$ be a generalized polynomial which is homogeneous of degree i in the non-commuting indeterminates x and y. Let $a \in R$ and (a) be the additive subgroup generated by a. If $F_n(x, f(x)) + F_{n-1}(x, f(x)) + \ldots + F_1(x, f(x)) \in Z(R)$ for all $x \in (a)$, then $F_i(a, f(a)) \in Z(R)$ for $i = 1, 2, \ldots, n$.

Proof of Theorem 4.2.1 Assume that $n = 1$. Linearizing the condition $[f(x), x] \in Z(R)$ for all $x \in L$, we have

$$[f(x), y] + [f(y), x] + [2D(x, y), x] + [2D(x, y), y] \in Z(R) \quad \text{for all } x, y \in L. \quad (4.2.1)$$

Substituting $-y$ for y in (4.2.1), we have

$$-[f(x), y] + [f(y), x] - [2D(x, y), x] + [2D(x, y), y] \in Z(R), \quad \text{for all } x, y \in L. \quad (4.2.2)$$

Subtracting (4.2.1) and (4.2.2), we get $2[f(x), y] + 4[D(x, y), x] \in Z(R)$ for all $x, y \in L$. Replacing y by x^2 in this relation we have $8[x^2, f(x)] \in Z(R)$ for all $x \in L$. Now commuting this with $f(x)$ and using 2-torsion condition, we obtain $[x^2, f(x)] = 0$ for all $x \in L$. This implies that $[f(x), x][x, f(x)] = 0$ for all $x \in L$ i.e. $[f(x), x]^2 = 0$ for all $x \in L$. Since the centre of a semiprime ring contains no nonzero nilpotent elements, $[f(x), x] = 0$ for all $x \in L$.

Now Suppose that $n > 1$. Linearizing the condition $[f(x), x^n] \in Z(R)$ we get

$$[f(x), x^n] + [f(x), x^{n-1}y + \ldots + yx^{n-1}] + [f(y), x^{n-1}y + \ldots + yx^{n-1}]$$

$$+ [f(y), x^n] + [2D(x, y), x^n] + [2D(x, y), x^{n-1}y + \ldots + yx^{n-1}] \in Z(R)$$

for all $x, y \in L$. Using Lemma 4.2.1 and the fact that $[f(x), x^n] \in Z(R)$ for all $x \in L$, we obtain

$$[f(x), x^{n-1}y + \ldots + yx^{n-1}] + [2D(x, y), x^{n-1}y + \ldots + yx^{n-1}]$$

$$+ [f(y), x^n] + [2D(x, y), x^n] \in Z(R), \quad \text{for all } x, y \in L. \quad (4.2.3)$$
Replacing \(y \) by \(-y\) in (4.2.3), we have

\[
-\left[f(x), x^{n-1}y + \cdots + yx^{n-1} \right] + \left[2D(x,y), x^{n-1}y + \cdots + yx^{n-1} \right] \\
+\left[f(y), x^n \right] - \left[2D(x,y), x^n \right] \in Z(R), \text{ for all } x, y \in L.
\] (4.2.4)

Now subtracting (4.2.3) and (4.2.4), we get

\[
2\left[f(x), x^{n-1}y + \cdots + yx^{n-1} \right] + 4\left[D(x,y), x^n \right] \in Z(R) \text{ for all } x, y \in L.
\] (4.2.5)

Substituting \(x^2 \) for \(y \) in (4.2.5), we find that \(2\left[f(x), nx^{n+1} \right] + 4\left[D(x,x^2), x^n \right] \in Z(R) \) for all \(x \in L \). This implies that \(2(4 + n)x\left[f(x), x^n \right] \in Z(R) \) for all \(x \in L \). i.e. \(2(4 + n)(x\left[f(x), x^n \right])^n \in Z(R) \) for all \(x \in L \). Commuting with \(f(x) \) and using torsion condition, we get

\[
[x^n[f(x), x^n], f(x)] = 0 \text{ for all } x \in L.
\] (4.2.6)

This implies that

\[
[f(x), x^n]^{n+1} = 0 \text{ for all } x \in L.
\] (4.2.7)

Since the centre of a semiprime ring contains no nonzero nilpotent elements, we have \([f(x), x^n] = 0\), for all \(x \in L \).

Using the similar techniques with slight modifications, we can prove the following:

Theorem 4.2.2 Let \(R \) be a semiprime ring and \(I \) be a nonzero left ideal of \(R \). Let \(n \) be a fixed positive integer. Let \(R \) be \(n! \)-torsion free for \(n > 1 \) and 2-torsion free for \(n = 1 \). Suppose there exists a symmetric biderivation \(D : R \times R \rightarrow R \) such that the mapping \(f : R \rightarrow R \) is \(n \)-centralizing on \(I \), where \(f \) stands for the trace of \(D \). Then \(f \) is \(n \)-commuting on \(I \).

The following are known results:

Lemma 4.2.2 [57, Corollary 2] If \(R \) is a semiprime ring and \(I \) is an ideal of \(R \), then \(I \cap A(I) = (0) \).
Lemma 4.2.3 [108, Theorem 4] Let R be a 2-torsion free semiprime ring. Suppose there exists a symmetric biderivation $D : R \times R \rightarrow R$ such that $D(f(x), x) = 0$ for all $x \in R$, where f denotes the trace of D. In this case we have $D = 0$.

Lemma 4.2.4 Let R be a prime ring of characteristic different from two and I be a nonzero ideal of R. If D is symmetric biderivation such that $D(x, x) = 0$ for all $x \in I$, then either $D = 0$ or R is commutative.

Proof Let $D(x, x) = 0$ for all $x \in I$. Linearization yields that $2D(x, y) = 0$ for all $x, y \in I$. Since characteristic of R is different from two, we have $D(x, y) = 0$ for all $x, y \in I$. Replacing y by ry, we get $D(x, r)y = 0$ for all $x, y \in I$ and $r \in R$. Substitute sx for x, we obtain $D(s, r)xy = 0$ for all $x, y \in I$ and $r, s \in R$. This implies that $D(s, r)R[x, y] = 0$ for all $x, y \in I$ and $r, s \in R$. Primeness of R yields that either $[x, y] = 0$ or $D(r, s) = 0$ for all $x, y \in I$ and $r, s \in R$. If $[x, y] = 0$ for all $x, y \in I$, then I is commutative and hence R is commutative. Later gives that $D = 0$.

The following theorem extends a result due to Vukman [109, Theorem 1].

Theorem 4.2.3 Let R be a prime ring of characteristic not two and three and I be an ideal of R. If D_1, D_2 are the symmetric biderivations of R with trace f_1, f_2 respectively such that $f_1(x)f_2(x) = 0$ for all $x \in I$, then either $D_1 = 0$ or $D_2 = 0$ unless $[I, I] = 0$.

Proof Suppose that $f_1(x)f_2(x) = 0$ for all $x \in I$. (4.2.8)

Linearization yields that

$$f_1(y)f_2(x) + 2D_1(x, y)f_2(x) + f_1(x)f_2(y) + 2D_1(x, y)f_2(y) + 2f_1(x)D_2(x, y) + 2f_1(y)D_2(x, y) + 4D_1(x, y)D_2(x, y) = 0 \text{ for all } x, y \in I. \ (4.2.9)$$
Substitute \(-y\) for \(y\) in (4.2.9) to get

\[
f_1(y)f_2(x) - 2D_1(x, y)f_2(x) + f_1(x)f_2(y) - 2D_1(x, y)f_2(y)
\]

\[-2f_1(x)D_2(x, y) - 2f_1(y)D_2(x, y) + 4D_1(x, y)D_2(x, y) = 0 \text{ for all } x, y \in I. \quad (4.2.10)\]

Adding (4.2.9) and (4.2.10) and using 2-torsion freeness of \(R\), we obtain

\[
f_1(y)f_2(x) + f_1(x)f_2(y) + 4D_1(x, y)D_2(x, y) = 0 \text{ for all } x, y \in I. \quad (4.2.11)\]

Replacing \(y\) by \(y + z\) in (4.2.11), we find

\[
\begin{align*}
f_1(y)f_2(x) + f_1(x)f_2(y) + 4D_1(x, y)D_2(x, z) + & f_1(x)f_2(z) + 4D_1(x, y)D_2(x, y) + 4D_1(x, z)D_2(x, z) \quad (4.2.12) \\
+ 4D_1(x, y)D_2(x, z) + 4D_1(x, z)D_2(x, y) = 0 \text{ for all } x, y, z \in I.
\end{align*}
\]

Using (4.2.11), (4.2.12) gives that

\[
4D_1(y, z)f_2(x) + 4f_1(x)D_2(y, z) + 8D_1(x, y)D_2(x, z) + 8D_1(x, z)D_2(x, y) = 0 \text{ for all } x, y, z \in I. \quad (4.2.13)
\]

Substitute \(y\) for \(x\) in (4.2.13), we get

\[
12D_1(y, z)f_2(y) + 12f_1(y)D_2(y, z) = 0 \text{ for all } y, z \in I. \quad (4.2.14)
\]

Replace \(z\) by \(zu\) in (4.2.14) and use (4.2.14) to obtain

\[
[f_1(y), z]D_2(y, u) + D_1(y, z)[u, f_2(y)] = 0 \text{ for all } y, z, u \in I. \quad (4.2.15)
\]

Again replace \(z\) by \(f_1(y)z\) in (4.2.15) to get

\[
\begin{align*}
f_1(y)[f_1(y), z]D_2(y, u) + f_1(y)D_1(y, z)[u, f_2(y)] + & D_1(y, f_1(y))z[u, f_2(y)] = 0 \text{ for all } y, z, u \in I. \quad (4.2.16)
\end{align*}
\]

Comparing (4.2.15) and (4.2.16), we arrive at

\[
D_1(y, f_1(y))z[u, f_2(y)] = 0 \text{ for all } y, z, u \in I. \quad (4.2.17)
\]
This implies that \(D_1(y, f_1(y))Rz[u, f_2(y)] = 0 \) for all \(y, z, u \in I \). Primeness of \(R \) yields that either \(D_1(y, f_1(y)) = 0 \) or \(z[u, f_2(y)] = 0 \) for all \(y, z, u \in I \). If \(D_1(y, f_1(y)) = 0 \) for all \(y \in I \), then conclusion follows from Lemma 4.2.3. Now consider the case when \(z[u, f_2(y)] = 0 \) for all \(y, z, u \in I \). Hence we get \([u, f_2(y)] = 0 \) for all \(y, u \in I \). Linearization yields that \([u, D_2(x, y)] = 0 \) for all \(x, y, u \in I \). Replacing \(x \) by \(xz \), we have \([u, x]D_2(z, y) + D_2(x, y)[u, z] = 0 \) for all \(x, y, u, z \in I \). In particular, we get \([x, z]D_2(z, y) = 0 \) for all \(x, y, z \in I \). This implies that \([x, z]D_2(z, y) = 0 \) for all \(x, y, z \in I \). Since \([I, I] \neq 0\), primeness of \(I \) yields that \(D_2(z, y) = 0 \) for all \(z, y \in I \).

Application of Lemma 4.2.4 gives that \(D_2 = 0 \).

In [108, Theorem 4] Vukman proved that if \(R \) is a 2-torsion free semiprime ring and \(D : R \times R \to R \) be a symmetric biderivation with trace \(f \) such that \(D(f(x), x) = 0 \) for all \(x \in R \), then \(D = 0 \). Further Yenigul et al. [117, Theorem 2] extended the result for a two sided ideal of a prime ring \(R \). We generalize the aforementioned results for semiprime ring in case of two sided ideal and prove the following.

Theorem 4.2.4 Let \(R \) be a 2-torsion free semiprime ring and \(I \) be an ideal of \(R \). Let \(D \) be a symmetric biderivation on \(R \) such that \(D(I, I) \subseteq I \). If \(f \) is the trace of \(D \) such that \(D(f(x), x) = 0 \) for all \(x \in I \), then \(D = 0 \) on \(I \).

Proof Suppose that \(D(f(x), x) = 0 \) for all \(x \in I \). (4.2.18)

Linearization yields that

\[
D(f(x), y) + D(f(x), x) + D(f(y), x) + D(f(y), y)
+ 2D(D(x, y), x) + 2D(D(x, y), y) = 0 \quad \text{for all } x, y \in I.
\] (4.2.19)

Comparing (4.2.18) and (4.2.19), we get

\[
D(f(x), y) + D(f(y), x) + 2D(D(x, y), x) + 2D(D(x, y), y) = 0 \quad \text{for all } x, y \in I.
\] (4.2.20)
Substitute $-y$ for y in (4.2.20), we find

$$-D(f(x), y) + D(f(y), x) - 2D(D(x, y), x) + 2D(D(x, y), y) = 0 \text{ for all } x, y \in I. \quad (4.2.21)$$

Adding (4.2.20) and (4.2.21) and using 2-torsion freeness of R, we get

$$D(f(y), x) + 2D(D(x, y), y) = 0 \text{ for all } x, y \in I. \quad (4.2.22)$$

Replace x by zx in (4.2.22), we obtain

$$xD(f(y), z) + D(f(y), x)z + 2xD(D(z, y), y) + 4D(x, y)D(z, y) + 2D(D(x, y), y)z = 0 \text{ for all } x, y \in I. \quad (4.2.23)$$

In view of (4.2.22), (4.2.23) reduces to

$$4D(x, y)D(z, y) = 0 \text{ for all } x, y \in I. \quad (4.2.24)$$

Since R is 2-torsion free, we have $D(x, y)D(z, y) = 0$ for all $x, y, z \in I$. Substituting xz for z to get $D(x, y)zD(x, y) = 0$ for all $x, y, z \in I$. On simplification, we get $D(x, y)I = 0$ and $ID(x, y) = 0$ for all $x, y \in I$, i.e. $D(x, y) \in A(I)$ for all $x, y \in I$. Since $D(I, I) \subseteq I$, we obtain $D(x, y) \in I \cap A(I) = (0)$ for all $x, y \in I$ by Lemma 4.2.2. Hence we get $D = 0$ on I.

4.3 Traces of symmetric generalized biderivations

In [13] Nurcan defined generalized biderivation in rings as follows:

Definition 4.3.1 (Generalized biderivation) Let R be a ring and $D : R \times R \to R$ be a biadditive map. A biadditive mapping $\Delta : R \times R \to R$ is said to be a generalized D-biderivation if for every $x \in R$, the map $y \mapsto \Delta(x, y)$ is a generalized derivation of R associated with the function $y \mapsto D(x, y)$ for all $x, y \in R$ as well as for every $y \in R$, the map $x \mapsto \Delta(x, y)$ is a generalized derivation of R associated with the function $x \mapsto D(x, y)$ for all $x, y \in R$, i.e. $\Delta(x, yz) = \Delta(x, y)z + yD(x, z)$ and
\[\Delta(xy, z) = \Delta(x, z)y + xD(y, z) \] for all \(x, y, z \in R \).

Example 4.3.1 Let \(R \) be a ring. If \(D \) is any biderivation of \(R \) and \(\alpha : R \times R \to R \) is a biadditive function such that \(\alpha(x, yz) = \alpha(x, y)z \) and \(\alpha(xy, z) = \alpha(x, z)y \) for all \(x, y, z \in R \), then \(D + \alpha \) is a generalized \(D \)-biderivation of \(R \).

We further extend Theorem 4.2.4 for a symmetric generalized biderivation of a prime ring in case of two sided ideal.

Theorem 4.3.1 Let \(R \) be a prime ring of characteristic not two and \(I \) be a nonzero ideal of \(R \). If \(\Delta \) is a symmetric generalized biderivation with associated biderivation \(D \) of \(R \) with trace \(f \) such that \(\Delta(f(x), x) = 0 \) for all \(x \in I \), then either \(\Delta = 0 \) or \(R \) is commutative.

Proof Suppose that

\[\Delta(f(x), x) = 0 \text{ for all } x \in I. \] \((4.3.1) \)

Linearizing (4.3.1) and using (4.3.1), we get

\[\Delta(f(x), y) + \Delta(f(y), x) + 2\Delta(D(x, y), x) + 2\Delta(D(x, y), y) = 0 \text{ for all } x, y \in I. \] \((4.3.2) \)

Replacing \(y \) by \(-y\) in (4.3.2), we get

\[-\Delta(f(x), y) + \Delta(f(y), x) - 2\Delta(D(x, y), x) + 2\Delta(D(x, y), y) = 0 \text{ for all } x, y \in I. \] \((4.3.3) \)

Adding (4.3.2) and (4.3.3) and using characteristic of \(R \) is not two, we find

\[\Delta(f(y), x) + 2\Delta(D(x, y), y) = 0 \text{ for all } x, y \in I. \] \((4.3.4) \)

Substitute \(xz \) for \(x \) in (4.3.4) to get

\[\Delta(f(y), xz) + xD(f(y), z) + 2\Delta(xD(z, y), y) + 2\Delta(D(x, y), z, y) = 0 \text{ for all } x, y, z \in I. \] \((4.3.5) \)
On simplification, we get

\[\Delta(f(y), x)z + xD(f(y), z) + 2\Delta(x, y)D(z, y) + 2x(D(z, y), y) \]

\[+ 2\Delta(D(x, y), y)z + 2D(x, y)D(z, y) = 0 \text{ for all } x, y, z \in I. \]

(4.3.6)

In view of (4.3.4), (4.3.6) yields that

\[xD(f(y), z) + 2\Delta(x, y)D(z, y) + 2xD(D(z, y), y) + 2D(x, y)D(z, y) = 0 \text{ for all } x, y, z \in I. \]

(4.3.7)

Replacing \(x \) by \(ux \) in (4.3.7), we obtain

\[uxD(f(y), z) + 2\Delta(u, y)xD(z, y) + 2u(x, y)D(z, y) + 2uxD(D(z, y), y) \]

\[+ 2D(u, y)xD(z, y) + 2uD(x, y)D(z, y) = 0 \text{ for all } x, y, z, u \in I. \]

(4.3.8)

Comparing (4.3.7) and (4.3.8), we get

\[2\Delta(u, y)xD(z, y) + 2uD(x, y)D(z, y) + 2xD(D(z, y), y) \]

\[- 2ux\Delta(x, y)D(z, y) = 0 \text{ for all } x, y, z, u \in I. \]

(4.3.9)

Since \(R \) is of characteristic not two and replace \(u \) by \(x \), we have

\[\Delta(x, y)xD(z, y) + xD(x, y)D(z, y) + D(x, y)xD(z, y) \]

\[- x\Delta(x, y)D(z, y) = 0 \text{ for all } x, y, z \in I. \]

(4.3.10)

This implies that

\[[\Delta(x, y), x] + (xD(x, y) + D(x, y)x)]D(z, y) = 0 \text{ for all } x, y, z \in I. \]

(4.3.11)

i.e., we have \([\Delta(x, y), x] + D(x^2, y)D(z, y) = 0 \text{ for all } x, y, z \in I. \) Replacing \(z \) by \(zu \), we obtain \([\Delta(x, y), x] + D(x^2, y)zD(u, y) = 0 \text{ for all } x, y, z, u \in I. \) Since \(R \) is prime, we get either \([\Delta(x, y), x] + D(x^2, y) = 0 \text{ or } D(u, y) = 0 \text{ for all } x, y, u \in I. \) Later yields that either \(R \) is commutative or \(D = 0 \) by Lemma 4.2.4.

If \(D = 0 \), then by (4.3.1) we get \(\Delta = 0 \). On the other hand, if \([\Delta(x, y), x] + D(x^2, y) = 0 \text{ for all } x, y \in I, \) then replacing \(y \) by \(yz \) we find \(\Delta(x, y)[z, x] + [\Delta(x, y), x]z+ \)
$y[D(x, z), x] + [y, x]D(x, z) + yD(x^2, z) + D(x^2, y)z = 0$ for all $x, y, z \in I$. This implies that $\Delta(x, y)[z, x] + y[D(x, z), x] + [y, x]D(x, z) + yD(x^2, z) = 0$ for all $x, y, z \in I$. In particular, if we take $x = z$, then we have $y[f(x), x] + [y, x]f(x) + yD(x^2, x) = 0$ for all $x, y \in I$. Again replace y by ry and use the last relation to get $[r, x]yf(x) = 0$ for all $x, y \in I$ and $r \in R$. Primeness of R yields that either $f(x) = 0$ or $[x, r] = 0$ for all $x \in I$ and $r \in R$. If $f(x) = 0$ for all $x \in I$, then by (4.3.1) $\Delta(0, x) = 0$ for all $x \in I$ and hence $\Delta = 0$. Later gives R is commutative.

Now we prove the above theorem for the noncommutative case.

Theorem 4.3.2 Let R be a noncommutative prime ring of characteristic not two and I be a nonzero ideal of R. If Δ is a symmetric generalized biderivation with associated biderivation D of R with trace f such that $\Delta(f(x), y) = 0$ for all $x, y \in I$, then $D = 0$ and hence $\Delta = 0$.

Proof Suppose that

$$\Delta(f(x), y) = 0 \text{ for all } x, y \in I. \quad (4.3.12)$$

Replacing y by yz in (4.3.12), we have

$$\Delta(f(x), y)z + yD(f(x), z) = 0 \text{ for all } x, y, z \in I. \quad (4.3.13)$$

In view of (4.3.12) and primeness of R, (4.3.13) yields that

$$D(f(x), z) = 0 \text{ for all } x, y, z \in I. \quad (4.3.14)$$

Substitute $x + y$ for x in (4.3.14) to get

$$D(f(x), z) + D(f(y), z) + 2D(D(x, y), z) = 0 \text{ for all } x, y, z \in I. \quad (4.3.15)$$

Using (4.3.14) and the fact that R is not of characteristic two we obtain

$$D(D(x, y), z) = 0 \text{ for all } x, y, z \in I. \quad (4.3.16)$$
Replacing \(y \) by \(yu \) in (4.3.16), we find
\[
yD(D(x, u), z) + D(y, z)D(x, u) + D(x, y)D(u, z) + D(D(x, y), z)u = 0 \text{ for all } x, y, z, u \in I. \tag{4.3.17}
\]
Applying (4.3.16) to obtain
\[
D(y, z)D(x, u) + D(x, y)D(u, z) = 0 \text{ for all } x, y, z, u \in I. \tag{4.3.18}
\]
Substituting \(yw \) for \(y \) in (4.3.18), we get
\[
D(y, z)wD(x, u) + D(x, y)wD(u, z) = 0 \text{ for all } x, y, z, u, w \in I. \tag{4.3.19}
\]
In particular, if we replace \(x \) by \(z \) in (4.3.19), then we obtain \(D(y, z)wD(z, u) + D(z, y)wD(u, z) = 0 \) for all \(y, z, u, w \in I \). Since \(D \) is symmetric and using the fact that \(R \) is not of characteristic two, we have \(D(y, z)wD(z, u) = 0 \) for all \(y, z, u, w \in I \). Primeness of \(I \) yields that \(D(z, u) = 0 \) for all \(z, u \in I \). Using Lemma 4.2.4, we have \(D = 0 \) and hence \(\Delta = 0 \).

4.4 Traces of symmetric biadditive mappings

Following lemmas are essential to prove our theorems.

Lemma 4.4.1 [56, Lemma 1] Let \(R \) be a 2-torsion free semiprime ring and \(L \) be a nonzero Lie ideal of \(R \). If \([L, L] \subseteq Z(R)\), then \(L \subseteq Z(R) \).

Lemma 4.4.2 Let \(R \) be a 2-torsion free semiprime ring and \(L \) be a nonzero square closed Lie ideal of \(R \). If \(x \circ y \in Z(R) \) for all \(x, y \in L \), then \(L \subseteq Z(R) \).

Proof Suppose \(L \nsubseteq Z(R) \) and \(x \circ y \in Z(R) \) for all \(x, y \in L \). Replacing \(x \) by \(2yx \), we get \(2y(x \circ y) \in Z(R) \) for all \(x, y \in L \). This implies that \(2[y(x \circ y), z] = 0 \) for all \(x, y, z \in L \). On simplification and using the fact that \(R \) is 2-torsion free, we have \([y, z](x \circ y) = 0 \) for all \(x, y, z \in L \). Substitute \(2xz \) for \(x \) to get \(2[y, z]x[y, z] = 0 \) for all \(x, z, y \in L \). Since \(R \) is 2-torsion free semiprime ring, we have \([y, z] = 0 \) for all \(y, z \in L \) by Lemma 2.4.1. Hence using Lemma 4.4.1, we get a contradiction. This completes the proof.
Lemma 4.4.3 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. If $L^2 \subseteq Z(R)$, then $L \subseteq Z(R)$.

Proof Since $xy \in Z(R)$ for all $x, y \in L$, $xy - yx = [x, y] \in Z(R)$ for all $x, y \in L$. Using Lemma 4.4.1, we get the required result.

Very recently Ashraf et.al. [20] explored the commutativity of a prime ring R admitting a generalized derivation F satisfying one of the following properties: (i) $F(xy) \mp xy \in Z(R)$, (ii) $F(xy) \mp xy \in Z(R)$, (iii) $F(x)F(y) \mp xy \in Z(R)$ for all $x, y \in R$.

Motivated by the above cited result, we prove the following: Let R be a semiprime ring of characteristic not two admitting a symmetric biadditive map D with trace f and L be a nonzero Lie ideal of R. Then $L \subseteq Z(R)$ if for all $x, y \in L$ one of the following holds: (i) $f(xy) \mp [x, y] \in Z(R)$, (ii) $f(xy) \mp xy \in Z(R)$, (iii) $f([x, y]) \mp [x, y] \in Z(R)$, (iv) $f([x, y]) \mp xy \in Z(R)$, (v) $f(xy) \mp f(x) \mp [x, y] \in Z(R)$, (vi) $f(xy) \mp f(y) \mp [x, y] \in Z(R)$, (vii) $f([x, y]) \mp f(x) \mp [x, y] \in Z(R)$, (viii) $f([x, y]) \mp f(y) \mp [x, y] \in Z(R)$, (ix) $f([x, y]) \mp f(xy) \mp [x, y] \in Z(R)$, (x) $f(xy) \mp x \circ y \in Z(R)$, (xi) $f([x, y]) \mp x \circ y \in Z(R)$, (xii) $f(x \circ y) \mp [x, y] \in Z(R)$, (xiii) $f(x \circ y) \mp x \circ y \in Z(R)$, (xiv) $f(x) \circ f(y) \mp [x, y] \in Z(R)$, (xv) $f(x \circ y) \mp f(xy) \mp x \circ y \in Z(R)$, (xvi) $f(x)f(y) \mp x \circ y \in Z(R)$.

Theorem 4.4.1 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f(xy) \mp [x, y] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Suppose
\[f(xy) - [x, y] \in Z(R) \text{ for all } x, y \in L. \tag{4.4.1} \]
Replacing y by $y + z$ in (4.4.1) we get
\[f(xy) + f(xz) + 2D(xy, xz) - [x, y] - [x, z] \in Z(R) \text{ for all } x, y, z \in L. \tag{4.4.2} \]
Since \(R \) is 2-torsion free, \((4.4.1)\) yields that

\[
D(xy, xz) \in Z(R) \text{ for all } x, y, z \in L. \tag{4.4.3}
\]

Substituting \(y \) for \(z \) in \((4.4.3)\), we get

\[
f(xy) = D(xy, xy) \in Z(R) \text{ for all } x, y \in L. \tag{4.4.4}
\]

In view of \((4.4.1)\), \((4.4.4)\) yields that

\[
[x, y] \in Z(R) \text{ for all } x, y \in L. \tag{4.4.5}
\]

This implies that \([L, L] \subseteq Z(R)\). Hence \(L \subseteq Z(R) \) by Lemma 4.4.1. Similarly, we can prove the result for the case \(f(xy) + [x, y] \in Z(R) \) for all \(x, y \in L \).

Theorem 4.4.2 Let \(R \) be a 2-torsion free semiprime ring and \(L \) be a nonzero Lie ideal of \(R \). Let \(D : R \times R \rightarrow R \) be a symmetric biadditive mapping and \(f \) be the trace of \(D \). If \(f(xy) \in Z(R) \) for all \(x, y \in L \), then \(L \subseteq Z(R) \).

Proof The proof runs on the same parallel lines as of Theorem 4.4.1.

Theorem 4.4.3 Let \(R \) be a 2-torsion free semiprime ring and \(L \) be a nonzero Lie ideal of \(R \). Let \(D : R \times R \rightarrow R \) be a symmetric biadditive mapping and \(f \) be the trace of \(D \). If \(f(xy) + xy \in Z(R) \) for all \(x, y \in L \), then \(L \subseteq Z(R) \).

Proof Let

\[
f(xy) - xy \in Z(R) \text{ for all } x, y \in L. \tag{4.4.6}
\]

Replacing \(y \) by \(y + z \) we get

\[
f(xy) + f(xz) + 2D(xy, xz) - xy - xz \in Z(R) \text{ for all } x, y, z \in L. \tag{4.4.7}
\]

Using \((4.4.6)\), we obtain

\[
2D(xy, xz) \in Z(R) \text{ for all } x, y, z \in L. \tag{4.4.8}
\]
Since R is 2-torsion free, we have
\[D(xy, xz) \in Z(R) \text{ for all } x, y, z \in L.\] (4.4.9)

Substituting y for z in (4.4.9), we get
\[f(xy) = D(xy, xy) \in Z(R) \text{ for all } x, y \in L.\] (4.4.10)

Using (4.4.6), we have $xy \in Z(R)$ for all $x, y \in L$. Hence $L^2 \subseteq Z(R)$ and by Lemma 4.4.3 $L \subseteq Z(R)$. Similarly we can prove the result if $f(xy) + xy \in Z(R)$ for all $x, y \in L$.

Theorem 4.4.4 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f(xy) + xy \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof The proof runs on the same parallel lines as of Theorem 4.4.3.

Theorem 4.4.5 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f([x, y]) + [x, y] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Let
\[f([x, y]) - [x, y] \in Z(R) \text{ for all } x, y \in L.\] (4.4.11)

Replacing y by $y + z$, we have $f([x, y] + [x, z]) - [x, y] - [x, z] \in Z(R)$ i.e. $f([x, y]) + f([x, z]) + 2D([x, y], [x, z]) - [x, y] - [x, z] \in Z(R)$ for all $x, y, z \in L$. Using (4.4.11), we get
\[2D([x, y], [x, z]) \in Z(R) \text{ for all } x, y, z \in L.\] (4.4.12)

Substituting y for z in (4.4.12) and using the fact that R is 2-torsion free, we find
\[f([x, y]) \in Z(R) \text{ for all } x, y \in L.\] (4.4.13)

In view of (4.4.11), (4.4.13) yields that $[x, y] \in Z(R)$ for all $x, y \in L$. Thus we get $[L, L] \subseteq Z(R)$ and by Lemma 4.4.1 $L \subseteq Z(R)$. Similarly one can prove the result if
Using similar arguments as we have done in the proof of Theorem 4.4.5, we can prove the following:

Theorem 4.4.6 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f([x,y]) + [y,x] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Theorem 4.4.7 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f([x,y]) + xy \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Let

\[f([x,y]) - xy \in Z(R) \quad \text{for all } x, y \in L. \tag{4.4.14} \]

Replacing y by $y + z$ in (4.4.14), we have $f([x,y] + [x,z]) - xy - xz \in Z(R)$ for all $x, y, z \in L$. This implies that

\[f([x,y]) + f([x,z]) + 2D([x,y],[x,z]) - xy - xz \in Z(R) \quad \text{for all } x, y, z \in L. \tag{4.4.15} \]

Using (4.4.14) we obtain

\[2D([x,y],[x,z]) \in Z(R) \quad \text{for all } x, y, z \in L. \tag{4.4.16} \]

Since R is 2-torsion free, (4.4.16) yields that

\[D([x,y],[x,z]) \in Z(R) \quad \text{for all } x, y, z \in L. \tag{4.4.17} \]

In particular, if we substitute y for z in (4.4.17), then we have $f([x,y]) \in Z(R)$ for all $x, y \in L$. Again using (4.4.14), we get $xy \in Z(R)$ for all $x, y \in L$. Thus $L^2 \subseteq Z(R)$ and application of Lemma 4.4.3 completes the proof. Similarly we can prove the result if $f([x,y]) + xy \in Z(R)$ for all $x, y \in L$.
Theorem 4.4.8 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \to R$ be a symmetric biadditive mapping and f be the trace of D. If $f([x, y]) = yx \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof The proof runs on the same parallel lines as that of Theorem 4.4.7.

Theorem 4.4.9 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \to R$ be a symmetric biadditive mapping and f be the trace of D. If $f(xy) = f(x) + [x, y] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Suppose

$$f(xy) - f(x) - [x, y] \in Z(R) \text{ for all } x, y \in L. \tag{4.4.18}$$

Replacing y by $y + z$, we get $f(xy) + f(xz) + 2D(xy, xz) - f(x) - [x, y] - [x, z] \in Z(R)$ for all $x, y, z \in L$. Using (4.4.18), we obtain

$$f(xz) + 2D(xy, xz) - [x, z] \in Z(R) \text{ for all } x, y, z \in L. \tag{4.4.19}$$

Substituting $-z$ for z in (4.4.19), we get

$$f(xz) - 2D(xy, xz) + [x, z] \in Z(R) \text{ for all } x, y, z \in L. \tag{4.4.20}$$

Adding (4.4.19) and (4.4.20) we obtain

$$2f(xz) \in Z(R) \text{ for all } x, z \in L. \tag{4.4.21}$$

Since R 2-torsion free, we have $f(xz) \in Z(R)$ for all $x, z \in L$.

Using (4.4.18), we get

$$f(x) - [x, y] \in Z(R) \text{ for all } x, y \in L. \tag{4.4.22}$$

Replacing x by $x + z$ in (4.4.22), we have

$$f(x) + f(z) + 2D(x, z) - [x, y] - [z, y] \in Z(R) \text{ for all } x, y, z \in L. \tag{4.4.23}$$
Again using $(4.4.18)$ and 2-torsion freeness of R, we find $D(x, z) \in Z(R)$ for all $x, z \in L$. In particular $f(x) = D(x, z) \in Z(R)$ for all $x \in L$. Since $f(xz) \in Z(R)$ and $f(x) \in Z(R)$, we have $f(xz) - f(x) \in Z(R)$ for all $x, z \in L$. Using $(4.4.18)$ we get $[x, y] \in Z(R)$ for all $x, y \in L$. Hence Lemma 4.4.1 completes the proof. The proof is similar if $f(xy) + f(x) + [x, y] \in Z(R)$ for all $x, y \in L$.

Theorem 4.4.10 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f(xy) \mp f(y) \mp [x, y] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Let

$$f(xy) - f(y) - [x, y] \in Z(R) \text{ for all } x, y \in L. \quad (4.4.24)$$

Replacing y by $y + z$, we have $f(xy) + f(xz) + 2D(xy, xz) - f(y) - f(z) - 2D(y, z) - [x, y] - [x, z] \in Z(R)$ for all $x, y, z \in L$. Using $(4.4.24)$, we get

$$2(D(xy, xz) - D(y, z)) \in Z(R) \text{ for all } x, y, z \in L. \quad (4.4.25)$$

Substituting y for z in $(4.4.25)$ and using the fact that R is 2-torsion free, we find

$$f(xy) - f(y) \in Z(R) \text{ for all } x, y \in L. \quad (4.4.26)$$

This implies that $[x, y] \in Z(R)$ for all $x, y \in L$. Thus $[L, L] \subseteq Z(R)$. Applying Lemma 4.4.1, we obtain $L \subseteq Z(R)$. The proof is similar for the case $f(xy) + f(y) + [x, y] \in Z(R)$ for all $x, y \in L$.

Theorem 4.4.11 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f([x, y]) \mp f(x) \mp [x, y] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Suppose

$$f([x, y]) - f(x) - [x, y] \in Z(R) \text{ for all } x, y \in L. \quad (4.4.27)$$
Replacing x by $x + z$ in (4.4.27), we obtain

\[f([x, y]) + f([z, y]) + 2D([x, y], [z, y]) - f(x) - f(z) - 2D(x, z) - [x, y] - [z, y] \in Z(R) \text{ for all } x, y, z \in L. \]

(4.4.28)

Using (4.4.27), we have

\[2(D([x, y], [z, y]) - D(x, z)) \in Z(R) \text{ for all } x, y, z \in L. \]

(4.4.29)

Substituting x for z in (4.4.29) and using the fact that R is 2-torsion free, we obtain

\[f([x, y]) - f(x) \in Z(R) \text{ for all } x, y \in L. \]

(4.4.30)

Again using (4.4.27), (4.4.30) yields that $[x, y] \in Z(R)$ for all $x, y \in L$. This implies that $[L, L] \subseteq Z(R)$. Application of Lemma 4.4.1 completes the proof. Similarly we can prove the theorem, if $f([x, y]) + f(x) + [x, y] \in Z(R)$ for all $x, y \in L$.

Theorem 4.4.12 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f([x, y]) + f([x, y]) \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Let

\[f([x, y]) - f(y) - [x, y] \in Z(R) \text{ for all } x, y \in L. \]

(4.4.31)

Replacing y by $y + z$ we get

\[f([x, y]) + f([x, z]) + 2D([x, y], [x, z]) - f(y) - f(z) - 2D(y, z) - [x, y] - [x, z] \in Z(R) \text{ for all } x, y, z \in L. \]

(4.4.32)

Using (4.4.31), (4.4.32) yields that

\[2(D([x, y], [x, z]) - D(y, z)) \in Z(R) \text{ for all } x, y, z \in L. \]

(4.4.33)

Substituting y for z in (4.4.33) and using the fact that R is 2-torsion free, we get

\[f([x, y]) - f(y) = D([x, y], [x, y]) - D(y, y) \in Z(R) \text{ for all } x, y \in L. \]

(4.4.34)
In view of (4.4.31), (4.4.34) yields that \([x, y] \in Z(R)\) for all \(x, y \in L\) i.e. \([L, L] \subseteq Z(R)\).

Using Lemma 4.4.1, we have \(L \subseteq Z(R)\). Similarly we can prove the theorem, if \(f([x, y]) + f(y) + [x, y] \in Z(R)\) for all \(x, y \in L\).

Using the similar techniques as used in proving Theorem 4.4.11 and Theorem 4.4.12, we can prove the following:

Theorem 4.4.13 Let \(R\) be a 2-torsion free semiprime ring and \(L\) be a nonzero Lie ideal of \(R\). Let \(D : R \times R \rightarrow R\) be a symmetric biadditive mapping and \(f\) be the trace of \(D\). If \(f([x, y]) + f(x) + [y, x] \in Z(R)\) for all \(x, y \in L\), then \(L \subseteq Z(R)\).

Theorem 4.4.14 Let \(R\) be a 2-torsion free semiprime ring and \(L\) be a nonzero Lie ideal of \(R\). Let \(D : R \times R \rightarrow R\) be a symmetric biadditive mapping and \(f\) be the trace of \(D\). If \(f([x, y]) + f(y) + [x, y] \in Z(R)\) for all \(x, y \in L\), then \(L \subseteq Z(R)\).

Theorem 4.4.15 Let \(R\) be a 2-torsion free semiprime ring and \(L\) be a nonzero Lie ideal of \(R\). Let \(D : R \times R \rightarrow R\) be a symmetric biadditive mapping and \(f\) be the trace of \(D\). If \(f([x, y]) + f(xy) + [x, y] \in Z(R)\) for all \(x, y \in L\), then \(L \subseteq Z(R)\).

Proof Let

\[
f([x, y]) - f(xy) - [x, y] \in Z(R)
\]

for all \(x, y \in L\). \hspace{1cm} (4.4.35)

Replacing \(y\) by \(y + z\) in (4.4.35) we get

\[
f([x, y]) + f([x, z]) + 2D([x, y], [x, z]) - f(xy) - f(xz)
\]

\[
-2D(xy, xz) - [x, y] - [x, z] \in Z(R)
\]

for all \(x, y, z \in L\). \hspace{1cm} (4.4.36)

Using (4.4.35) and (4.4.36), we obtain

\[
2(D([x, y], [x, z]) - D(xy, xz)) \in Z(R)
\]

for all \(x, y, z \in L\). \hspace{1cm} (4.4.37)

Since \(R\) is 2-torsion free, we have

\[
D([x, y], [x, z]) - D(xy, xz) \in Z(R)
\]

for all \(x, y, z \in L\). \hspace{1cm} (4.4.38)
Substituting y for z in (4.4.38), we get

$$f([x, y]) - f(xy) \in Z(R) \text{ for all } x, y \in L. \quad (4.4.39)$$

Using (4.4.35), we have $[x, y] \in Z(R)$ for all $x, y \in L$ and Lemma 4.4.1 completes the proof. The proof is same for the case $f([x, y]) + f(xy) + [x, y] \in Z(R)$ for all $x, y \in L$.

Similarly we can prove the following:

Theorem 4.4.16 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f([x, y]) \triangleq f(xy) \triangleq [y, x] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Theorem 4.4.17 Let R be a 2-torsion free semiprime ring and L be a nonzero square closed Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f(xy) \triangleq x \circ y \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Suppose that

$$f(xy) - x \circ y \in Z(R) \text{ for all } x, y \in L. \quad (4.4.40)$$

Replacing y by $y+z$ in (4.4.40) we get $f(xy) + f(xz) + 2D(xy, xz) - x \circ y - x \circ z \in Z(R)$ for all $x, y, z \in L$. Since R is 2-torsion free, we obtain $D(xy, xz) \in Z(R)$ for all $x, y, z \in L$ by using (4.4.40). If we substituting y for z, then we get $f(xy) = D(xy, xy) \in Z(R)$ for all $x, y \in L$. In view of (4.4.40), we find that $x \circ y \in Z(R)$ for all $x, y \in L$. Hence $L \subseteq Z(R)$ by Lemma 4.4.2. Similarly, we can prove the result for the case $f(xy) + x \circ y \in Z(R)$ for all $x, y \in L$.

Theorem 4.4.18 Let R be a 2-torsion free semiprime ring and L be a nonzero square closed Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f([x, y]) \triangleq x \circ y \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Let
\[f([x, y]) + x \circ y \in Z(R) \text{ for all } x, y \in L. \] (4.4.41)
Replacing \(y \) by \(y + z \) we get
\[f([x, y]) + f([x, z]) + 2D([x, y], [x, z]) - x \circ y - x \circ z \in Z(R) \text{ for all } x, y, z \in L. \] (4.4.42)
Using (4.4.41), we obtain \(2D([x, y], [x, z]) \in Z(R) \) for all \(x, y, z \in L \). This implies that \(2[D([x, y], [x, z]), r] = 0 \) for all \(x, y, z \in L \) and \(r \in R \). Since \(R \) is 2-torsion free, we have \(D([x, y], [x, z]) \in Z(R) \) for all \(x, y, z \in L \). Substituting \(y \) for \(z \), we get \(f([x, y]) = D([x, y]) \in Z(R) \) for all \(x, y \in L \). Using (4.4.41), we have \(x \circ y \in Z(R) \) for all \(x, y \in L \). Hence by Lemma 4.4.2 \(L \subseteq Z(R) \). Similarly we can prove the result if \(f([x, y]) + x \circ y \in Z(R) \) for all \(x, y \in L \).

Theorem 4.4.19 Let \(R \) be a 2-torsion free semiprime ring and \(L \) be a nonzero Lie ideal of \(R \). Let \(D : R \times R \to R \) be a symmetric biadditive mapping and \(f \) be the trace of \(D \). If \(f(x \circ y) + [x, y] \in Z(R) \) for all \(x, y \in L \), then \(L \subseteq Z(R) \).

Proof Let
\[f(x \circ y) - [x, y] \in Z(R) \text{ for all } x, y \in L. \] (4.4.43)
Replacing \(y \) by \(y + z \) in (4.4.43), we have \(f(x \circ y + x \circ z) - [x, y] - [x, z] \in Z(R) \) i.e. \(f(x \circ y) + f(x \circ z) + 2D(x \circ y, x \circ z) - [x, y] - [x, z] \in Z(R) \) for all \(x, y, z \in L \). Using (4.4.43), we get
\[2D(x \circ y, x \circ z) \in Z(R) \text{ for all } x, y, z \in L. \] (4.4.44)
Substituting \(y \) for \(z \) in (4.4.44) and using the fact that \(R \) is 2-torsion free, we find
\[f(x \circ y) \in Z(R) \text{ for all } x, y \in L. \] (4.4.45)
In view of (4.4.45), (4.4.43) yields that \([x, y] \in Z(R) \) for all \(x, y \in L \). Thus we get \([L, L] \subseteq Z(R) \) and by Lemma 4.4.1 \(L \subseteq Z(R) \). Similarly one can prove the result if \(f([x, y]) + [x, y] \in Z(R) \) for all \(x, y \in L \).
Theorem 4.4.20 Let R be a 2-torsion free semiprime ring and L be a nonzero square closed Lie ideal of R. Let $D : R \times R \to R$ be a symmetric biadditive mapping and f be the trace of D. If $f(x \circ y) = x \circ y \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Let
\[
 f(x \circ y) - x \circ y \in Z(R) \quad \text{for all } x, y \in L. \tag{4.4.46}
\]
Replacing y by $y + z$ in (4.4.46), we have $f(x \circ y + x \circ z) - x \circ y - x \circ z \in Z(R)$ for all $x, y, z \in L$. This implies that
\[
 f(x \circ y) + f(x \circ z) + 2D(x \circ y, x \circ z) - x \circ y - x \circ z \in Z(R) \quad \text{for all } x, y, z \in L. \tag{4.4.47}
\]
Using (4.4.46), we obtain
\[
 2D(x \circ y, x \circ z) \in Z(R) \quad \text{for all } x, y, z \in L. \tag{4.4.48}
\]
Since R is 2-torsion free, (4.4.48) yields that
\[
 D(x \circ y, x \circ z) \in Z(R) \quad \text{for all } x, y, z \in L. \tag{4.4.49}
\]
In particular, if we substitute y for z in (4.4.49), then we have $f(x \circ y) \in Z(R)$ for all $x, y \in L$. Again using (4.4.46), we get $x \circ y \in Z(R)$ for all $x \in L$. This application of Lemma 4.4.2 completes the proof. Similarly we can prove the result if $f(x \circ y) + x \circ y \in Z(R)$ for all $x, y \in L$.

Theorem 4.4.21 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \to R$ be a symmetric biadditive mapping and f be the trace of D. If $f(x) \circ f(y) \neq [x, y] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Suppose
\[
 f(x) \circ f(y) - [x, y] \in Z(R) \quad \text{for all } x, y \in L. \tag{4.4.50}
\]
Replacing y by $y + z$ in (4.4.50), we get $f(x) \circ f(y) + f(x) \circ f(z) + 2f(x) \circ D(y, z) - [x, y] - [x, z] \in Z(R)$ for all $x, y, z \in L$. Using (4.4.50) we obtain
\[
 2(f(x) \circ D(y, z)) \in Z(R) \quad \text{for all } x, y, z \in L. \tag{4.4.51}
\]
Substituting y for z in (4.4.51), we get $2(f(x) \circ f(y)) \in Z(R)$ for all $x, y \in L$. Since R is 2-torsion free, we have

$$f(x) \circ f(y) \in Z(R) \text{ for all } x, y \in L. \quad (4.4.52)$$

In view of (4.4.50), (4.4.52) yields that $[x, y] \in Z(R)$ for all $x, y \in L$. Hence Lemma 4.4.1 completes the proof. The proof is similar if $f(x) \circ f(y) + [x, y] \in Z(R)$ for all $x, y \in L$.

Theorem 4.4.22 Let R be a 2-torsion free semiprime ring and L be a nonzero square closed Lie ideal of R. Let $D : R \times R \to R$ be a symmetric biadditive mapping and f be the trace of D. If $f(x) \circ f(y) + xy \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Suppose

$$f(x) \circ f(y) - [x, y] \in Z(R) \text{ for all } x, y \in L. \quad (4.4.53)$$

Replacing y by $y + z$ in (4.4.53), we get

$$f(x) \circ f(y) + f(x) \circ f(z) + 2f(x) \circ D(y, z) - [x, y] - [x, z] \in Z(R) \text{ for all } x, y, z \in L. \quad (4.4.54)$$

In view of (4.4.53), (4.4.54) yields that

$$2(f(x) \circ D(y, z)) \in Z(R) \text{ for all } x, y, z \in L. \quad (4.4.55)$$

In particular, we have $2(f(x) \circ D(y, y)) = 2(f(x) \circ f(y)) \in Z(R)$ for all $x, y \in L$. Since R is 2-torsion free and using (4.4.53), we obtain $[x, y] \in Z(R)$ for all $x, y \in L$. Application of Lemma 4.4.1, we get the required result.

Theorem 4.4.23 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \to R$ be a symmetric biadditive mapping and f be the trace of D. If $f(x \circ y) \neq f(y) \neq [x, y] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Suppose that
\[f(x \circ y) - f(y) - [x, y] \in Z(R) \text{ for all } x, y \in L. \] (4.4.56)
Replacing \(y \) by \(y + z \) in (4.4.56), we get
\[f(x \circ y) + f(x \circ z) + 2D(x \circ y, x \circ z) - f(y) - f(z) - 2D(y, z) - [x, y] - [x, z] \in Z(R) \text{ for all } x, y, z \in L. \] Using (4.4.56), we have
\[2(D(x \circ y, x \circ z) - D(y, z)) \in Z(R) \text{ for all } x, y, z \in L. \] Substituting \(y \) for \(z \) and using the fact that \(R \) is 2-torsion free, we get
\[f(x \circ y) - f(y) = D(x \circ y, x \circ y) - D(y, y) \in Z(R) \text{ for all } x, y \in L. \] (4.4.57)
In view of (4.4.57), (4.4.56) yields that \([x, y] \in Z(R)\) for all \(x, y \in L \) i.e. \([L, L] \subseteq Z(R)\).
Using Lemma 4.4.1, we have \(L \subseteq Z(R) \). Similarly we can prove the theorem if
\[f(x \circ y) + f(y) + [x, y] \in Z(R) \text{ for all } x, y \in L. \]

Theorem 4.4.24 Let \(R \) be a 2-torsion free semiprime ring and \(L \) be a nonzero square closed Lie ideal of \(R \). Let \(D : R \times R \rightarrow R \) be a symmetric biadditive mapping and \(f \) be the trace of \(D \). If \(f(x \circ y) + f(y) + x \circ y \in Z(R) \) for all \(x, y \in L \), then \(L \subseteq Z(R) \).

Proof Suppose that
\[f(x \circ y) - f(y) - x \circ y \in Z(R) \text{ for all } x, y \in L. \] (4.4.58)
Replacing \(y \) by \(y + z \) in (4.4.58) we have
\[f(x \circ y) + f(x \circ z) + 2D(x \circ y, x \circ z) - f(y) - f(z) - 2D(y, z) - x \circ y - x \circ z \in Z(R) \text{ for all } x, y, z \in L. \] Using (4.4.58), we obtain
\[2(D(x \circ y, x \circ z) - D(y, z)) \in Z(R) \text{ for all } x, y, z \in L. \] (4.4.59)
Substitute \(y \) for \(z \) in (4.4.59) and using 2-torsion freeness of \(R \), we have
\[D(x \circ y, x \circ y) - D(y, y) = f(x \circ y) - f(y) \in Z(R) \text{ for all } x, y \in L. \] (4.4.60)
In view of (4.4.60), (4.4.58) yields that \(x \circ y \in Z(R) \) for all \(x, y \in L \). Hence application of Lemma 4.4.2 completes the proof.
Theorem 4.4.25 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D: R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f(x \circ y) = f(xy) = [x, y] \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Suppose that
\[
f(x \circ y) - f(xy) - [x, y] \in Z(R) \text{ for all } x, y \in L. \quad (4.4.61)
\]
Replace y by $y + z$ in (4.4.61) to get $f(x \circ y) + f(x \circ z) + 2D(x \circ y, x \circ z) - f(xy) - f(xz) - 2D(xy, xz) - [x, y] - [x, z] \in Z(R)$ for all $x, y, z \in L$. In view of (4.4.61) last relation yields that $2(D(x \circ y, x \circ z) - D(xy, xz)) \in Z(R)$ for all $x, y, z \in L$. Since R is 2-torsion free, we have $D(x \circ y, x \circ z) - D(xy, xz) \in Z(R)$ for all $x, y, z \in L$. Substituting y for z, we obtain $f(x \circ y) - f(xy) \in Z(R)$ for all $x, y \in L$. Using (4.4.61), we have $[x, y] \in Z(R)$ for all $x, y \in L$ i.e. $[L, L] \subseteq Z(R)$. An application of Lemma 4.4.1 completes the proof. The proof is same for the case $f(x \circ y) + f(xy) + [x, y] \in Z(R)$ for all $x, y \in L$.

Theorem 4.4.26 Let R be a 2-torsion free semiprime ring and L be a nonzero square closed Lie ideal of R. Let $D: R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f(x \circ y) = f(xy) = x \circ y \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Suppose that
\[
f(x \circ y) - f(xy) - x \circ y \in Z(R) \text{ for all } x, y \in L. \quad (4.4.62)
\]
Replacing y by $y + z$ in (4.4.62), we have $f(x \circ y) + f(x \circ z) + 2D(x \circ y, x \circ z) - f(xy) - f(xz) - 2D(xy, xz) - x \circ y - x \circ z \in Z(R)$ for all $x, y, z \in L$. Application of (4.4.62) yields that $2(D(x \circ y, x \circ z) - D(xy, xz)) \in Z(R)$ for all $x, y, z \in L$. Since R is 2-torsion free, we have $D(x \circ y, x \circ z) - D(xy, xz) \in Z(R)$ for all $x, y, z \in L$. If we substitute y for z, then we find $f(x \circ y) - f(xy)$ for all $x, y \in L$. In view of (4.4.62), we get $x \circ y \in Z(R)$ for all $x, y \in L$. This implies that $L \subseteq Z(R)$ by Lemma 4.4.2.
Theorem 4.4.27 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \to R$ be a symmetric biadditive mapping and f be the trace of D. If $f(x)f(y) + [x,y] \in Z(R)$ for all $x,y \in L$, then $L \subseteq Z(R)$.

Proof Suppose

$$f(x)f(y) - [x,y] \in Z(R) \text{ for all } x,y \in L. \quad (4.4.63)$$

Substituting $y + z$ for y in (4.4.63), we have

$$f(x)f(y) + f(x)f(z) + 2f(x)D(y, z) - [x, y] - [x, z] \in Z(R) \text{ for all } x,y,z \in L. \quad (4.4.64)$$

Using (4.4.63), we find

$$2f(x)D(y, z) \in Z(R) \text{ for all } x,y,z \in L. \quad (4.4.65)$$

Since R is of 2-torsion free, we have

$$f(x)D(y, z) \in Z(R) \text{ for all } x,y,z \in L. \quad (4.4.66)$$

In particular if we replace z by y in (4.4.66), then

$$f(x)f(y) \in Z(R) \text{ for all } x,y \in L. \quad (4.4.67)$$

Comparing (4.4.67) and (4.4.63), we obtain $[x,y] \in Z(R)$ for all $x,y \in L$ i.e. $[L,L] \subseteq Z(R)$. Application of Lemma 4.4.1 completes the proof. The proof is same for the case $f(x)f(y) + [y, x] \in Z(R)$ for all $x, y \in L$.

Theorem 4.4.28 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \to R$ be a symmetric biadditive mapping and f be the trace of D. If $f(x)f(y) + [y, x] \in Z(R)$ for all $x,y \in L$, then $L \subseteq Z(R)$.

Proof The proof runs on the parallel lines as those of Theorem 4.4.27.

Theorem 4.4.29 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \to R$ be a symmetric biadditive mapping and f be the
trace of D. If $f(x)f(y) + xy \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof Let

\[f(x)f(y) - xy \in Z(R) \text{ for all } x, y \in L. \quad (4.4.68) \]

Substituting $y + z$ for y in (4.4.68), we have

\[f(x)f(y) + f(x)f(z) + 2f(x)D(y, z) - xy - xz \in Z(R) \text{ for all } x, y, z \in L. \quad (4.4.69) \]

Applying (4.4.68), we obtain

\[2f(x)D(y, z) \in Z(R) \text{ for all } x, y, z \in L. \quad (4.4.70) \]

Since R is 2-torsion free, we have

\[f(x)D(y, z) \in Z(R) \text{ for all } x, y, z \in L. \quad (4.4.71) \]

In particular if we replace z by y in (4.4.71) and using (4.4.68), we find

\[f(x)f(y) \in Z(R) \text{ for all } x, y \in L. \quad (4.4.72) \]

This implies that $xy \in Z(R)$ and hence $[x, y] = xy - yx \in Z(R)$ for all $x, y \in L$. An application of Lemma 4.4.1 completes the proof. Similarly we can prove the theorem if $f(x)f(y) + xy \in Z(R)$ for all $x, y \in L$.

Theorem 4.4.30 Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Let $D : R \times R \rightarrow R$ be a symmetric biadditive mapping and f be the trace of D. If $f(x)f(y) + xy \in Z(R)$ for all $x, y \in L$, then $L \subseteq Z(R)$.

Proof The proof runs on the parallel lines as those of Theorem 4.4.29.