Contents

List of Figures i
List of Tables vi
List of Abbreviations ix
Research Papers and Books xii
Abstract xvi

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 - Introduction</td>
<td>1-7</td>
</tr>
<tr>
<td>1.1 Aim of the Research Work</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Organization of the Thesis</td>
<td>6</td>
</tr>
</tbody>
</table>

Chapter 2 - Literature Survey	8-13
2.1 Interconnect Repeater Design	8
2.2 SET D Flip-Flop Design	9
2.3 Domino Logic AND Gate Design	11
2.4 Static D-Latch Design	13

Chapter 3 - Simulation Tool	14-29
3.1 Simulation Tool	14
3.2 T-Spice	15
3.3 Schematic Editor	18
3.4 Layout Editor	21
3.5 Waveform Editor	28

Chapter 4 - Simulation Environment	30-56
4.1 Environment	30
4.2 Simulation Commands used for Coding	31

Chapter 5 - Interconnect Repeater Design	57-80
5.1 The problem with Interconnections	57
5.2 Design of the Repeater	59
5.3 Simulation and Analysis	63
5.4 LVSB Bias Repeater and Conventional Repeater	69
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 5.1</td>
<td>Schematic of inverter with pMOS body at ground</td>
<td>59</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Conventional repeater circuit with interconnect</td>
<td>61</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>LVSB repeater circuit with interconnect</td>
<td>61</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>STGB bias repeater circuit with interconnect</td>
<td>62</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Conventional repeater output for 10mm interconnect at 50 kHz</td>
<td>65</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>LVSB bias buffer output for 10mm interconnects at 50 kHz</td>
<td>65</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>STGB bias repeater output for 10mm interconnects at 50 kHz</td>
<td>66</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Average power consumption in STGB bias repeater for different lengths of interconnects at various frequencies</td>
<td>67</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Delays in Conventional and STGB bias repeater at various voltages for 10mm interconnect at 1 kHz frequency</td>
<td>72</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Delays in Conventional and STGB bias repeater at various voltages for 5mm interconnect at 1 kHz frequency</td>
<td>72</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Delays in Conventional and STGB bias repeater at various voltages for 1mm interconnect at 1 kHz frequency</td>
<td>72</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>Power-delay products in Conventional and STGB bias repeater at various aspect ratios</td>
<td>73</td>
</tr>
<tr>
<td>Figure 5.13</td>
<td>Power-delay products in Conventional and STGB bias repeater at various temperatures</td>
<td>74</td>
</tr>
<tr>
<td>Figure 5.14</td>
<td>Power consumed in LVSB and STGB buffer at various voltages for 10mm interconnects in 180nm technology</td>
<td>77</td>
</tr>
</tbody>
</table>
Figure 5.15 Delay introduced by LVSB and STGB buffer for various voltages for 10mm interconnects at 180nm technology 77
Figure 5.16 Power-delay product in LVSB and STGB bias buffer for various voltages at 90nm Technology for 10mm interconnect 78
Figure 5.17 Power-delay product in LVSB and STGB bias buffer at various temperatures in 180nm Technology for 10mm interconnect 79
Figure 5.18 Power-delay product in LVSB and STGB bias buffer at various temperatures in 90nm Technology for 10mm interconnect 79
Figure 6.1 Conventional SET D flip-flop 83
Figure 6.2 10-transistor SET D flip-flop 83
Figure 6.3 LVSB bias 10-transistor SET D flip-flop 85
Figure 6.4 Sub-Threshold Grounded Body (STGB) bias 10-transistor SET D flip-flop 85
Figure 6.5 NBB 10-transistor SET D flip-flop 86
Figure 6.6 Power consumption at various frequencies in 65nm technology 88
Figure 6.7 Power consumption at various frequencies in 45nm technology 89
Figure 6.8 Power-delay products at various frequencies in 65nm technology in percentage scale 89
Figure 6.9 Power-delay product at various frequencies in 45nm technology in percentage scale 90
Figure 6.10 Power consumption at various aspect ratios in 65nm technology 90
Figure 6.11 Power consumption at various aspect ratios in 45nm technology 91
Figure 6.12 Power consumption with temperature at 65nm technology 92
Figure 6.13 Power consumption with temperature at 45nm technology
Figure 6.14 Power-delay product with Temperature at 45nm technology
Figure 6.15 Power consumption at various frequencies in 65nm technology
Figure 6.16 Power consumption at various frequencies in 45nm technology
Figure 7.1 Conventional body bias inverter
Figure 7.2 Different body biasing schemes
Figure 7.3 Power consumption at various voltages in 32nm technology
Figure 7.4 Delay at various voltages in 32nm technology
Figure 7.5 Power consumption versus frequency in 32nm technology
Figure 7.6 Power consumption versus temperature in 32nm technology
Figure 7.7 Delay versus temperature in 32nm technology
Figure 7.8 Power-delay product versus temperature in 32nm technology
Figure 7.9 Power consumption at different voltages in 45nm technology
Figure 7.10 Power-delay product at various voltages in 45nm technology
Figure 7.11 Power consumption at different frequencies in 45nm technology
Figure 7.12 Power-delay product versus frequency in 45nm technology
Figure 7.13 Power consumption at different temperatures in 45nm technology
Figure 7.14 Delay at various temperatures in 45nm technology
Figure 7.15 Power-delay product versus temperature at 45nm technology
Figure 7.16 Power consumption versus voltage at 65nm technology
Figure 7.17 Delay at different voltages in 65nm technology
Figure 7.18 Power-delay product at different voltages in 65nm technology 107
Figure 8.1 Gate level schematic and block diagram of D-latch 111
Figure 8.2 Schematic view of conventional 8T latch 112
Figure 8.3 Layout design of conventional 8T latch 113
Figure 8.4 Input-output waveform of conventional 8T latch 114
Figure 8.5 Schematic view of proposed 8T latch 115
Figure 8.6 Layout design of proposed 8T latch 116
Figure 8.7 Input-output waveform of the proposed 8T latch 117
Figure 8.8 Schematic view of proposed 8T latch with delay element 118
Figure 8.9 Circuits of 8T latch using different delay elements 119
Figure 8.10 Comparison of APC for different delay circuits at 45nm technology 120
Figure 8.11 Comparison of delay for different delay circuits at 45nm technology 120
Figure 8.12 Comparison of PDP for different delay circuits at 45nm technology 121
Figure 8.13 Layout design of proposed 8T latch with delay 121
Figure 8.14 Input-Output waveforms of proposed 8T latch with delay 122
Figure 8.15 Schematic view of proposed 7T latch 123
Figure 8.16 Layout design of proposed 7T latch 123
Figure 8.17 Input-Output waveform of proposed 7T latch 124
Figure 8.18 Schematic view of proposed 7T latch with delay 125
Figure 8.19 Layout design of proposed 7T latch with delay 126
| Figure 8.20 | Input-output waveform of proposed 7T latch with delay | 127 |
| Figure 8.21 | Schematic view of proposed 6T Latch | 128 |
| Figure 8.22 | Layout design of proposed 6T latch | 129 |
| Figure 8.23 | Input-output waveform of proposed 6T latch | 130 |
| Figure 8.24 | APC at various temperatures in 65nm technology | 131 |
| Figure 8.25 | Delay at various temperatures in 65nm technology | 132 |
| Figure 8.26 | APC at various supply voltages in 65nm technology | 133 |
| Figure 8.27 | Delay at various supply voltage in 65nm technology | 134 |
| Figure 8.28 | APC at various temperatures in 45nm technology | 135 |
| Figure 8.29 | APC at various supply voltages in 45nm technology | 137 |
| Figure 8.30 | Delay at various supply voltages in 45nm technology | 137 |
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table I.</td>
<td>Delay, power and power-delay product variation with nMOS body bias V_{BB}</td>
<td>60</td>
</tr>
<tr>
<td>Table II.</td>
<td>Delay in Conventional and STGB bias repeater at different frequencies for various interconnect lengths</td>
<td>66</td>
</tr>
<tr>
<td>Table III.</td>
<td>Average power consumption, delay and power-delay product in Conventional and LVSB bias buffer for 10mm interconnect lengths (130nm technology)</td>
<td>68</td>
</tr>
<tr>
<td>Table IV.</td>
<td>Interconnect parameters in 180nm and 130nm technology</td>
<td>69</td>
</tr>
<tr>
<td>Table V.</td>
<td>Power-delay product in Conventional and LVSB bias buffer at different frequencies for 10mm interconnect lengths (180nm technology)</td>
<td>69</td>
</tr>
<tr>
<td>Table VI.</td>
<td>Average power consumption, delay and power-delay product in Conventional and LVSB bias buffer for 10mm interconnect lengths (130nm technology)</td>
<td>70</td>
</tr>
<tr>
<td>Table VII.</td>
<td>Delay in Conventional and STGB bias repeaters at different frequencies for various interconnect lengths</td>
<td>71</td>
</tr>
<tr>
<td>Table VIII.</td>
<td>Power and delay in Conventional and STGB bias repeater at various temperatures</td>
<td>74</td>
</tr>
<tr>
<td>Table IX.</td>
<td>Delay in LVSB and STGB buffer at different frequencies for various interconnect lengths in 180nm technology</td>
<td>75</td>
</tr>
<tr>
<td>Table X.</td>
<td>Average power consumption in LVSB and STGB buffer at different frequencies for various interconnect lengths in 180nm technology</td>
<td>75</td>
</tr>
<tr>
<td>Table XI.</td>
<td>Average power consumption in LVSB and STGB bias buffer</td>
<td>76</td>
</tr>
</tbody>
</table>
Table XII. Power-delay product in LVSB and STGB bias buffer in 90nm technology

Table XIII. Power-delay product in LVSB and STGB bias buffer for various voltages at 130nm technology for 10mm interconnect

Table XIV. Aspect ratios of 10-transistor SET D flip-flop

Table XV. Comparison of 16-transistor and 10-transistor SET D flip-flops

Table XVI. Comparison of SET D flip-flop designs in 65nm technology

Table XVII. Comparison of SET D flip-flop designs in 45nm technology

Table XVIII. Parasitic capacitances of conventional 8T latch

Table XIX. Parasitic capacitance of proposed 8T latch

Table XX. Parasitic capacitance of proposed 8T latch with delay

Table XXI. Parasitic capacitance of proposed 7T latch

Table XXII. Parasitic capacitance of proposed 7T latch with delay

Table XXIII. Parasitic Capacitance of proposed 6T latch

Table XXIV. Power-delay product at various temperatures in 65nm technology

Table XXV. Power-delay product at various supply voltages in 65nm technology

Table XXVI. Delay at various temperatures in 45nm technology

Table XXVII. Power-delay product at various temperatures in 45nm technology
Table XXVIII. Power-delay product at various supply voltages in 45nm technology