CHAPTER 3

COMMUTATIVITY OF ALTERNATIVE s-UNITAL RINGS
Tominaga and Yaqub [46], Abujabal, M.A.Khan and M.S. Khan [3], Abujabal [1], Hirano and Yaqub[34], Abujabal and M.S.Khan[2] studied the properties of commutativity of s-unital rings.

In this chapter, we generalize some results on commutativity of alternative s-unital rings. In section 3.1, we show that if \(R \) is an alternative ring satisfying (1) for every \(x, y \) in \(R \) there exist integers \(m = m(x, y) > 1, n = n(x, y) \geq 0 \) and \(k = k(x, y) \geq 0 \) such that \([x, x^n y + y^m x^k] = 0\), then \(R \) is normal. Also if \(R \) satisfies (2) for each \(y \in R \), there exists an integer \(m = m(y) > 1 \) such that \([x, x^n y + y^m x^k] = 0 = [x, x^n y^m + y^{m^2} x^k]\) for all \(x \in R \), where \(k \geq 0, n \neq 1 \) is a fixed non-negative integer, then the commutator ideal \(C(R) \subseteq Z(R) \). Using these results it is shown that if \(R \) is an alternative left or right s-unital ring, then the following statements are equivalent: (i) \(R \) is commutative (ii) \(R \) satisfies (1) and there exist a subset \(A(R) \) of \(N(R) \) for which \(R \) satisfies (3) for each \(x \in R \), either \(x \in Z(R) \) or there exists a polynomial \(f(t) \) in \(Z[t] \) such that \(x - x^2 f(x) \in A(R) \). (iii) \(R \) satisfies (2). In section 3.2, we show that if \(R \) satisfies (i) \((x - x^n)(y - y^n) = 0 \), then the set of nilpotent elements \(N(R) \) forms an ideal of \(R \) with \(N^2(R) = 0 \) and \([a, x^{k+n}] = [a, x^{k+1}]\), for all \(a \in N(R), x \in R \) and \(k \geq 0 \).

Also if a subdirectly irreducible ring \(R \) with 1 satisfies (i) and (ii) \((xy)^{n+1} - y^{n+1}x^{n+1} \in Z(R)\), then \(R \) is a local ring with radical \(N(R) \) and \(R/N(R) \) is a finite field. We use this to prove the commutativity of an alternative s-unital ring \(R \). In section 3.3, we prove that if \(n > 1, m, r \) are fixed non-negative integers and an alternative ring \(R \) with unity 1 satisfies the polynomial identity (i) \(x[x^n, y] = y^r [x, y^m]y \) for all \(x, y \) in \(R \), then \(C(R) \) is
null and if R is n-torsion free, then $N(R) \subseteq Z(R)$. Also we show that an alternative left s-unital ring R satisfying the polynomial identity (i) is commutative.

3.1: s-unital rings with $[x, x^n y + y^m x^k] = 0 = [x, x^n y^m + y^m x^k]$

There is a number of conditions each of which implies the commutativity of certain rings. The equivalence of few such conditions to that of commutativity of rings was established by Tominaga and Yaqub[46]. The list of these equivalent conditions was further enlarged by these authors in [48]. In this section we extend the work of Tominaga and Yaqub[46], Abujabal, M.A.Khan and M.S. Khan[3], Abujabal[1] for rings satisfying more general polynomial identities.

Throughout this section R denotes an alternative s-unital ring, $A(R)$ a nonempty subset of R, $V_R(A(R))$ the centralizer of a subset $A(R)$ of R and $Z[t]$ the set of polynomials in t with coefficients in the ring of integers Z.

We consider the following ring properties:

(I-A(R)): For each $x \in R$, there exists a polynomial $f(t)$ in $Z[t]$ such that $x - x^2 f(x) \in A(R)$.

(II-A(R)): For each $x \in R$, either $x \in Z(R)$ or there exists a polynomial $f(t)$ in $Z[t]$ such that $x - x^2 f(x) \in A(R)$.

(III-A(R)): For every $a \in A(R)$ and $x \in R$, $[[a, x], x] = 0$.
(IV): For every $y \in R$, there exist integers $m = m(x, y) > 1$, $n = n(x, y) \geq 0$ and $k = k(x, y) \geq 0$ such that $[x, x^n y + y^m x^k] = 0$.

(V): For each $y \in R$, there exists an integer $m = m(y) > 1$ such that $[x, x^n y + y^m x^k] = 0 = [x, x^n y^m + y^{m^2} x^k]$ for all $x \in R$, where $k \geq 0$, $n \neq 1$ is a fixed non-negative integer.

(VI): For every $x, y \in R$, there exist integers $m > 1$, $k \geq 0$ and $n \geq 0$ such that $[x, x^n y + y^m x^k] = 0$.

To prove the main results, we need the following well-known results:

Lemma 3.1.1: Let R be a ring such that $[x, [x, y]] = 0$ for all x and y in R, then $[x^k, y] = k x^{k-1} [x, y]$ for any positive integer k.

Proof: We prove this by induction on k.

The identity $[x^k, y] = k x^{k-1} [x, y]$ is true for integer $k = 1$.

Suppose we assume that $[x^k, y] = k x^{k-1} [x, y]$.

Consider $[x^{k+1}, y] = [x^k x, y]$

$$= x^k [x, y] + [x^k, y] x$$

$$= x^k [x, y] + k x^{k-1} [x, y] x$$

$$= x^k [x, y] + k x^k [x, y],$$ since $[x, [x, y]] = 0$.

\[(k + 1)x^k \leq [x, y], \text{ for all } k > 1.\]

Therefore by induction for all positive integers \(k\), \([x^k, y] = kx^{k-1}[x, y]\). □

Lemma 3.1.2[6, Lemma 2]: Let \(R\) be ring with unity 1 and let \(x\) and \(y\) be elements of \(R\). If \(kx^m[x, y] = 0\) and \((k + 1)^m[x, y] = 0\), for some integers \(m \geq 1\) and \(k \geq 1\), then necessarily \(k[x, y] = 0\).

Lemma 3.1.3[46]:

(i) Let \(\Phi\) be a ring homomorphism of \(R\) onto \(R^*\). If \(R\) satisfies (I-A(R)), (II-A(R)) or (III-A(R)) then \(R^*\) satisfies (I- \(\Phi\)(A(R))), (II- \(\Phi\)(A(R))) or (III- \(\Phi\)(A(R))) respectively.

(ii) If \(A(R)\) is commutative and \(R\) satisfies (II-A(R)), then \(N(R)\) is a commutative nil ideal of \(R\) containing \(C(R)\) and is contained in \(V_R(A(R))\). In particular, \((N(R))^2 \subseteq Z(R)\).

(iii) If there exists a commutative subset \(A(R)\) of \(N(R)\) for which \(R\) satisfies (II-A(R)) and (III-A(R)), then \(R\) is commutative.

Lemma 3.1.4[10]: Let \(R\) be a left (resp. right) s-unital ring. If for each pair of elements \(x\) and \(y\) in \(R\), there exists a positive integer \(k = k(x, y)\) and an element \(e = e(x, y)\) of \(R\) such that \(x^ke = x^k\) and \(y^ke = y^k\) (resp. \(ex^k = x^k\) and \(ey^k = y^k\)), then \(R\) is s-unital.
Lemma 3.1.5[42, Lemma 3]: Let R be a ring with unity and let k and m be natural numbers. If $(1 - y^k)x = 0$ then $(1 - y^{km})x = 0$, for all x, y in R.

Lemma 3.1.6[37, Theorem]: Let f be a polynomial in n non-commuting indeterminates x_1, x_2, \ldots, x_n with relatively prime integral coefficients. Then the following are equivalent:

(a) Every ring satisfying the polynomial identity $f = 0$ has a nil commutator ideal.

(b) Every semiprime ring satisfying $f = 0$ is commutative.

(c) For every prime p, $(GF(p))_2$, the ring of 2×2 matrices over the Galois field $GF(p)$, fails to satisfy $f = 0$.

Lemma 3.1.7[33, Theorem 3]: If R is a ring with center $Z(R)$ such that for every $a \in R$ there exists a polynomial $p_a(t)$ such that $a - a^2p_a(t) \in Z(R)$, then R is commutative.

Lemma 3.1.8[29, Theorem 19]: Let R be a ring and let $n = n(x) > 1$ be an integer depending on x. If $x^n - x \in Z(R)$ for all $x \in R$, then R is commutative.

The following Lemmas are essential in proving our results.

Lemma 3.1.9: Let R be a ring satisfying (IV). Then R is normal. Proof: Given an idempotent element e and an element x in R, then

there exist integer $m = m(e, e + ex(1 - e)) > 1$ and
\[n = n(e, e + ex(1 - e)) \geq 0 \text{ and } k = k(e, e + ex(1 - e)) \geq 1 \text{ such that } x = e \text{ and } y = e + ex(1 - e), \text{ we have} \]

\[[e, e^n(e + ex(1 - e)) + (e + ex(1 - e))^m e^k] = 0. \]

So, \(e^{n+1}(e + ex(1 - e)) + e(e + ex(1 - e))^m e^k - e^n(e + ex(1 - e))e - (e + ex(1 - e))^m e^{k+1} = 0. \)

As \(e^k = e \) for all \(k \geq 1 \), we get \(ex(1 - e) + ex(e - e^2) = 0. \)

Hence \(ex(1 - e) = 0 \), that is \(ex = exe. \)

Similarly \(xe = exe. \) Therefore \(ex = xe, \text{ for all } x \in R. \)

Thus \(R \) is Normal. \(\square \)

Lemma 3.1.10: Let \(R \) be an alternative ring with unity 1 satisfying (IV). Then \(N(R) \subseteq Z(R). \)

Proof: If \(a \in N(R) \) and \(x \in R \), then there exist integers \(m_1 = m(x, a) > 1, n_1 = n(x, a) \geq 0 \) and \(k_1 = k(x, a) \geq 0 \) such that \(x^{n_1}[x, a] = [a^{m_1}, x]x^{k_1}, \) for all \(x \in R. \)

If \(m_2 = m(x, a^{m_1}) > 1, n_2 = n(x, a^{m_1}) \geq 0 \) and \(k_2 = k(x, a^{m_1}) \geq 0, \) then \(x^{n_2}[x, a^{m_1}] = [(a^{m_1})^{m_2}, x]x^{k_2} = [a^{m_1m_2}, x]x^{k_2}, \) for all \(x \in R. \) Thus \(x^{n_1+n_2}[x, a] = -[a^{m_1m_2}, x]x^{k_1+k_2}, \) for all \(x \in R. \)
Hence, for any positive integer t,

$$x^{n_1+n_2+\cdots+n_t}[x,a] = (-1)^{t-1}[a^{m_1m_2\cdots m_t}, x]x^{k_1+k_2+\cdots+k_t},$$
for all $x \in R$.

But a is nilpotent, then $a^{m_1m_2\cdots m_t} = 0$, for sufficiently large t. So $x^{n_1+n_2+\cdots+n_t}[x,a] = 0$ for all $x \in R$. Let $n'(x) = n_1 + n_2 + \cdots + n_t$.

Then $x^{n'(x)}[x,a] = 0$, for all $x \in R$. For $n' = \max \{n'(x), n'(x+1)\}$, we have $x^{n'}[x,a] = 0$ and $(x+1)^{n'}[x,a] = 0$. Now by Lemma 3.1.2 yields

$$[x,a] = 0, \text{ for all } x \in R.$$ Therefore, $a \in Z(R)$ and thus $N(R) \subseteq Z(R)$. ■

By using Lemma 3.1.7, we have the following:

Lemma 3.1.11[1]: Let R be an alternative ring with unity 1 satisfying (IV) and (II-A(R)) for a subset $A(R)$ of $N(R)$. Then R is commutative.

Lemma 3.1.12: Let R be an alternative ring with unity 1 satisfying (V). Then $C(R) \subseteq Z(R)$.

Proof: Let $n \geq 0$ be a fixed integer. Then for any $y \in R$, there exists an integer $m = m(y) > 1$ and $k = k(y) > 1$ such that condition (V) can be rewritten as $x^n[x,y] = \left[y^m, x\right]x^k$, for all $x \in R$ \hspace{1cm} 3.1.1

and $x^n[x,y^m] = \left[y^{m^2}, x\right]x^k$, for all $x \in R$. \hspace{1cm} 3.1.2

Now replacing x by $x+1$ in 3.1.1, we get
\[(x + 1)^n [x, y] x^k = [y^m, x] (x + 1)^k x^k\]

\[= x^n [x, y] (x + 1)^k, \text{ for all } x, y \in R.\]

By Lemma 3.1.6, we observe that \(C(R)\) is a nil ideal, that is \(C(R) \subseteq Z(R)\). Since \(x = e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\) and \(y = e_{12} + e_{21} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\) fail to satisfy the identity \((x + 1)^n [x, y] x^k - x^n [x, y] (x + 1)^k = 0\) in \((GF(p))_2\), for a prime \(p\). Hence, by Lemma 3.1.10, \(C(R) \subseteq N(R) \subseteq Z(R)\).

\[\text{Lemma 3.1.13:}\] Let \(R\) be an alternative ring with unity 1 satisfying (V). Then \(R\) is commutative.

Proof: For \(n = 0 = k\), we get \([x, y] = [y^m, x]\), for all \(x, y \in R\). So by the commutativity of \(R\) follows from Lemma 3.1.8. Now, we suppose that \(n > 1\) or \(k > 1\). If \(k = n\), then \(x^n [x, y] = [y^m, x] x^n\), and by Lemma 3.1.10, we get \(x^n [x, y] = x^n [x, y^m]\). Therefore, \(x^n [x, y - y^m] = 0\) and \((x + 1)^n [x, y - y^m] = 0\), for all \(x, y \in R\). By Lemma 3.1.2, we have \([x, y - y^m] = 0\), for all \(x, y \in R\). Therefore, \(R\) is commutative by Lemma 3.1.8. Without loss of generality, we suppose that \(n > k\).

Let \(t = 2^{n+1} - 2^{k+1}\). Then \(t > 0\) for \(n > k\). By using 3.1.1, we get

\[tx^n [x, y] = (2^{n+1} - 2^{k+1}) x^n [x, y]\]

\[= 2^{n+1} x^n [x, y] - 2^{k+1} x^n [x, y]\]

\[= (2x)^n [(2x), y] - 2^{k+1} [y^m, x] x^k\]
\[(2x)^n[(2x), y] - [y^m, (2x)](2x)^k\]

\[= 0.\]

By replacing \(x\) by \(x + 1\) and using Lemma 3.1.2 gives \(t[x, y] = 0\). Again, Lemma 3.1.1 and Lemma 3.1.12 together imply that \([x^t, y] = tx^{t-1}[x, y] = 0\), for all \(x, y \in R\). So, \(x^t \in Z(R)\), for all \(x \in R\).

Further, using 3.1.1, 3.1.2 and the fact that \(C(R) \subseteq Z(R)\). We see that

\[(1 - y^{(m-1)^2})[x, y]x^{2n-k} = [x, y]x^{2n-k} - y^{(m-1)^2}[x, y]x^{2n-k}\]

\[= [y^m, x]x^n - y^{(m-1)^2}[y^m, x]x^n\]

\[= -x^n[x, y^m] - my^{m-1}y^{(m-1)^2}[y, x]x^n\]

\[= -x^n[x, y^m] + my^{m(m-1)}x^n[x, y]\]

\[= -x^n[x, y^m] + my^{m(m-1)}[y^m, x]x^k\]

\[= -x^n[x, y^m] + [y^{m^2}, x]x^k = 0.\]

This implies that \((1 - y^{(m-1)^2})[x, y]x^{2n-k} = 0\), for all \(x, y \in R\).

By replacing \(x\) by \(x + 1\), we get \((1 - y^{(m-1)^2})[x, y](x + 1)^{2n-k} = 0\), for all \(x, y \in R\). By Lemma 3.1.2, we obtain

\[(1 - y^{(m-1)^2})[x, y] = 0, \text{ for all } x, y \in R.\] 3.1.3
But since, $x^t \in Z(R)$ for all $x \in R$, we get

$$[x, y - y^t(m-1)^2+1] = (1 - y^t(m-1)^2)[x, y] = 0,$$

for all $x, y \in R$.

Thus $y^t(m-1)^2+1 \in Z(R)$, so $m = m(y) > 1$. Therefore, R is commutative by Lemma 3.1.8.

Theorem 3.1.1: An alternative ring R is commutative if and only if R satisfies (IV) and (II-A(R)) for a commutative subset $A(R)$ of $N(R)$.

Proof: It is easy to see that a commutative ring R satisfies the conditions given in the theorem. Now, let R be an alternative ring satisfying the hypothesis of our theorem. If R has unity 1, then the result follows from the Lemma 3.1.11. So we suppose that R does not contain unity 1. In view of Lemma 3.1.3(i), R can be assumed to be a subdirectly irreducible ring without unity 1. Let $x \in R \setminus Z(R)$ be an arbitrary element. By hypothesis, R satisfies (II-A(R)) for a commutative subset $A(R)$ of $N(R)$, and thus, there exists an element $y \in < x >$, the subring generated by x, and an integer $m > 1$ such that $x^m = x^{m+1}y$. Clearly, $e = x^m y^m$ is idempotent with $x^m = x^m e$, and also e is central by Lemma 3.1.5. Since R has no unity, $e = 0$. Again by Lemma 3.1.3(ii), x is in the commutative ideal $N(R)$ and $[x, [x, a]] = 0$ for all $a \in A(R)$. Hence R is commutative by Lemma 3.1.3(iii).
Theorem 3.1.2: If R is an alternative left or right s-unital ring, then the following statements are equivalent:

(i) R is commutative

(ii) R satisfies (IV) and there exists a subset $A(R)$ of $N(R)$ for which R satisfies (II-A(R)).

(iii) R satisfies (V).

Proof: If R is a commutative left or right s-unital ring, then clearly, R satisfies (ii) and (iii). Now, suppose that R satisfies (ii). First, we show that R is s-unital. Let R be a right s-unital ring, and let x and y be arbitrary elements of R. Then we can find an element $e \in R$ such that $xe = x$ and $ye = y$. Further, there exist integers $m = m(x, e) > 1$, $n = n(x, e) \geq 1$ and $k = k(x, e) \geq 0$ such that $e^m x^{k+1} = -[x, x^n e + e^m x^k] + x^{k+1} = x^{k+1}$. Similarly, there exist integers $m' = m'(y, e) > 1$, $n' = n'(y, e) \geq 1$ and $k' = k'(x, e) \geq 0$ such that $e^{m'} y^{k'+1} = y^{k'+1}$. Therefore, $e^{mm'} x^{k'+1} = x^{k'+1}$ and $e^{mm'} y^{k'+1} = y^{k'+1}$. Hence, R is an s-unital by Lemma 3.1.4.

Now, suppose that R is a left s-unital ring. Let $x, y \in R$. Then there exists an element $e \in R$ such that $ex = x$ and $ey = y$. Also, there exists integers $m = m(x, e) > 1$, $n = n(x, e) \geq 1$ and $k = k(x, e) \geq 0$ such that $x^{n+1} e = [x, x^n e + e^m x^k] + x^{n+1} = x^{n+1}$. Similarly, if $m' = m(y, e) > 1$, $k' = k(y, e) \geq 0$ and $n' = n(y, e) \geq 1$, then we have $y^{n'+1} e = y^{n'+1}$. Hence, $x^{n+n'+1} e = x^{n+n'+1}$ and $y^{n+n'+1} e = y^{n+n'+1}$. Again, by Lemma 3.1.4, R is an s-unital ring.
In view of proposition 1 of [35], we assume that R has unity 1. Hence R is commutative by Lemma 3.1.11. Thus (ii) implies (i).

Finally, if R satisfies (iii), then as argued above, we assume that R has unity 1. Hence, R is commutative by Lemma 3.1.13.

Example 3.1.1: Theorem 3.1.1 need not be true if we drop the condition that $A(R)$ is commutative. For this, consider

$$R = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} : a, b, c \in GF(2) \right\}.$$

Then R is a nilpotent ring of index 3 and also $N(R) = R$. Further, R satisfies (IV). However, with $A(R) = N(R)$, R also satisfies (II-A(R)). But R is not commutative.

Example 3.1.2: This example shows that both conditions (IV) and (II-A(R)) in Theorem 3.1.2(ii) are essential for the ring R with unity 1 to be commutative. Let $R = \left\{ aI + S : S = \begin{pmatrix} 0 & b & c \\ 0 & 0 & d \\ 0 & 0 & 0 \end{pmatrix} \text{ and } I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : a, b, c, d \in GF(2) \right\}$.

Then, it is easy to check that $N(R) = S$ and R does not satisfy (IV). Let $A(R) = N(R)$. Then for all $x \in R$, we have $x - x^2 f(x) \in A(R)$. However, R is not commutative.

3.2: s-unital rings with $(xy)^{n+1} - y^{n+1}x^{n+1} \in Z(R)$
A well-known theorem of Jacobson asserts that if R is a ring with the property that for every x in R there exists an integer $n > 1$ such that $x^n = x$, then R is commutative. With this motivation, Hirano and Yaqub[34] considered the structure of a ring R which satisfies the identity $(x - x^n)(y - y^n) = 0$, for all x, y in R, $n > 1$ is fixed. In this section, we show that if R satisfies (i) $(x - x^n)(y - y^n) = 0$, then the set of nilpotent elements $N(R)$ forms an ideal of R with $N^2(R) = 0$ and $[a, x^{k+n}] = [a, x^{k+1}]$, for all $a \in N(R), x \in R$ and $k \geq 0$. Also if a subdirectly irreducible ring R with 1 satisfies (i) and (ii) $(xy)^{n+1} - y^{n+1}x^{n+1} \in Z(R)$, then R is a local ring with radical $N(R)$ and $R/N(R)$ is a finite field. We use this to prove the commutativity of an alternative s-unital ring R.

In order to prove our main results, we first state a number of well-known results.

Lemma 3.2.1[5]: Suppose that i) for every x in R, $x - x^n \in N(R)$ with some integer $n > 1$, where $N(R)$ is the set of nilpotents in R. ii) $N(R)$ is commutative and iii) for all x in R and a in $N(R)$, $[x, [x, a]] = 0$, then R is commutative.

Lemma 3.2.2[40]: Let R be a ring with identity and suppose that $[x^h, y^h] = 0$ and $[x^k, y^k] = 0$ for all x, y in R, where h and k are fixed relatively prime positive integers, then R is commutative.

We now prove the following Lemmas which are essential in proving our results:
Lemma 3.2.3: Suppose that R satisfies $(x - x^n)(y - y^n) = 0$ for all x, y in R, then $N(R)$ forms an ideal of R with $N^2(R) = 0$ and $[a, x^{k+n}] = [a, x^{k+1}]$, for all $a \in N(R), x \in R$ and $k \geq 0$. In particular, if R has 1 and x is invertible then $[a, x^{n-1}] = 0$.

Proof: By 3.2.1, $(a - a^n)^2 = 0$, namely $a^2 = a^2(2a^{n-1} - a^{2(n-1)})$. Since $n - 1 > 0$, we can easily that $a^2 = 0$. Now let $b \in N(R)$, then $0 = (a - a^n)(b - b^n) = ab$. Hence $N(R)$ forms an ideal by [47, Lemma 1(1)]. By using 3.2.1, we get $(x - x^n) \in N(R)$.

Now $[a, x^{k+1}] - [a, x^{k+n}] = ax^{k+1} - x^{k+1}a - ax^{k+n} + x^{k+n}a$

$= a(x - x^n)x^k - x^k(x - x^n)a$

$= 0$. ■

Lemma 3.2.4: Let R be a ring with 1. If R satisfies $(xy)^{n+1} - y^n x^{n+1} \in Z(R)$, for all x, y in R, then R is normal.

Proof: Let e be an idempotent in R and $r \in R$. By putting $x = e + er(1 - e)$ and $y = 1 - e$ in 3.2.2, we get

$0 = [1 - e, (er(1 - e))^{n+1} - er(1 - e)] = er(1 - e)$. Hence $er = ere$. Similarly, we get $re = ere$. Therefore R is normal. ■

Lemma 3.2.5: Let R be a subdirectly irreducible ring with 1. If R satisfies $(x - x^n)(y - y^n) = 0$ and $(xy)^{n+1} - y^{n+1}x^{n+1} \in Z(R)$, for all x, y in R, then R is a local ring with radical $N(R)$ and $R/N(R)$ is a finite field.
Proof: Let R be an arbitrary element in $R/N(R)$. By using 3.2.1, $r^2 = r^3 f(r)$, for some $f(t) \in Z[t]$. Obviously, $e = (rf(r))^2$ is an idempotent with $r^2e = r^2$. Hence e is a nonzero central idempotent by Lemma 3.2.4. Since R is subdirectly irreducible, $e = 1$ and r is invertible. Thus we have thus seen that R is a local ring with radical $N(R)$. Since $R/N(R)$ satisfies the identity $(x - x^n) = 0$, by Jacobson’s theorem, we see that $R/N(R)$ is a finite field.

Theorem 3.2.1: Let R be an alternative s-unital ring with center $Z(R)$ and $n > 1$ a fixed integer. Suppose $(x - x^n)(y - y^n) = 0$ and $(xy)^n - y^n x^n \in Z(R)$, for all x, y in R. 3.2.3 If for all x in R and a in $N(R)$, $(n - 1)[x, a] = 0$ implies $[x, a] = 0$ then R is commutative, where $N(R)$ is the set of nilpotents in R.

Proof: Let x in R, a in $N(R)$ and choose a pseudo identity e of $\{a, x\}$, then by Lemma 3.2.3, we have

$$(n - 1)[x, a] = (n - 1)[x^n, a]$$

$$= \{(e + a)x^n - x^n(e + a)\} - ((x + e)^n - (e + a)^n x^n) \in Z(R)$$

So, $(n - 1)[y, [x, a]] = 0$, for all y in R.

Hence $[y, [x, a]] = 0$ and therefore R is commutative.
Theorem 3.2.2: Let R be an alternative s-unital ring with center $Z(R)$ and $n > 1$ a fixed integer. Suppose $(x - x^n)(y - y^n) = 0$ and

$$(xy)^{n+1} - y^{n+1}x^{n+1} \in Z(R),$$

for all x, y in R, then R is commutative.

Proof: In view of [35, proposition 1], we assume that R has 1. By Lemma 3.2.3 and Lemma 3.2.4, we assume further that R is a local ring with radical $N(R)$, $N^2(R) = 0$ and $R/N(R) = GF(p^a)$ with some prime p. Let u, v be units in R, a in $N(R)$ and x, y in R.

By using Lemma 3.2.3, we get

$$n[x^2,a] = n[x^{n+1},a] =$$

$$\{(1+a)x^{n+1} - (1+a)^{n+1}x^n\} - \{(x(1+a))^{n+1} - x^{n+1}(1+a)^{n+1}\}.$$

Since $R/N(R)$ is commutative and $N^2(R) = 0$, we have

$$[(uv)^n - v^n u^n, x] = [v^{-1}((vu)^{n+1} - v^{n+1}u^{n+1})u^{-1}, x]$$

$$= ((vu)^{n+1} - v^{n+1}u^{n+1})[v^{-1}u^{-1}, x] = 0.$$

So, $(uv)^n - v^n u^n \in Z(R)$.

Hence \((n + 1)[u, a] = n[u^n, a] =\)
\[
\left\{ ((1 + a)x)^{n+1} - (1 + a)^{n+1}x^{n+1} \right\} - \left\{ (x(1 + a))^{n+1} - x^{n+1}(1 + a)^{n+1} \right\} \in Z(R).
\]

Since both \(n[u^2, a]\) and \((n + 1)[u^2, a]\) are in \(Z(R)\), we get \([u^2, a] \in Z(R)\). Therefore, \([x^2, a] \in Z(R)\).

If \(p \neq 2\) then \(2[u, a] = [(1 + u)^2 - u^2, a] \in Z(R)\) and \(p^2[u, a] = 0\) implies \([u, a] \in Z(R)\). On the other hand, if \(p = 2\) then \(u^2a - u \in N(R)\), and so \([u, a] = [u, a] - [u - u^2a, a] = [u^2a, a] \in Z(R)\). Thus in either case, \([x, a] \in Z(R)\) and therefore \(R\) is commutative by Lemma 3.2.1.

Consider the following examples:

Example 3.2.1: Consider the ring

\[
R = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} : 0, 1 \in GF(2) \right\}.
\]

The condition \((x - x^n)(y - y^n) = 0\) holds in \(R\) for all positive integers \(n\) but \(R\) is not commutative.

Example 3.2.2: Consider the ring

\[
R = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} : 0, 1 \in GF(2) \right\}.
\]

Obvisously, \(R\) is not s-unital but satisfies 3.2.1, 3.2.2 and 3.2.3 for \(n = 2\). This example shows that in Theorem 3.2.1 and
Theorem 3.2.2: The hypothesis that \(R \) is s-unital cannot be deleted.

\[\]

3.3: Left s-unital rings with \(x[x^n, y] = y^r[x, y^m]y \)

Abujabal and M.S. Khan [2] studied the commutativity of a left s-unital ring \(R \) satisfying the polynomial identity \(x^t[x^n, y] = y^r[x, y^m]y^s \), for all \(x, y \) in \(R \). In this section, we prove that if \(n>1, m, r \) are fixed nonnegative integers and an alternative ring \(R \) with unity 1 satisfies the polynomial identity (i) \(x[x^n, y] = y^r[x, y^m]y \) for all \(x, y \) in \(R \), then \(C(R) \) is nil and if \(R \) is \(n \)-torsion free, then \(N(R) \subseteq Z(R) \). Also we show that an alternative left s-unital ring \(R \) satisfying the polynomial identity (i) is commutative.

Throughout this section \(R \) denotes an alternative left s-unital ring, \(Z(R) \) the center of \(R \), \(C(R) \) the commutator ideal of \(R \), \(N(R) \) the set of all nilpotent elements of \(R \), \(N'(R) \) the set of all zero divisors in \(R \), \(GF(p) \) the Galois field with \(p \) elements and \((GF(p))_2\) the ring of all 2x2 matrices over \(GF(p) \).

In order to prove our results, we shall require the following well-known results.

Lemma 3.3.1[11, Lemma 2]: Let \(R \) be a ring with unity 1, and let \(x \) and \(y \) be elements in \(R \). If \(kx^m[x, y] = 0 \) and \(k(x + 1)^m[x, y] = 0 \), for some integers \(m \geq 1 \) and \(k \geq 1 \), then necessarily \(k[x, y] = 0 \).
Lemma 3.3.2 [42, Lemma 3]: Let R be a ring with unity 1, and let x and y be elements in R. If $(1 - y^k)x = 0$, then $(1 - y^{km})x = 0$, for some integers $k > 0$ and $m > 0$.

Lemma 3.3.3 [2]: Let x and y be elements in a ring R. Suppose that there exists relatively prime positive integers m and n such that $m[x, y] = 0$ and $n[x, y] = 0$ then $[x, y] = 0$.

Lemma 3.3.4 [14, Theorem 4(c)]: Let R be a ring with unity 1. Suppose that for each x in R there exists a pair n and m of relatively prime positive integers for which $x^n \in Z(R)$ and $x^m \in Z(R)$, then R is commutative.

Lemma 3.3.5 [27, Theorem 18]: Let R be a ring and let $n>1$ be an integer. Suppose that $(x^n - x) \in Z(R)$, for all x in R, then R is commutative.

Lemma 3.3.6 [29, Theorem]: If for every x and y in a ring R we can find a polynomial $p_{x,y}(t)$ with integral coefficients which depends on x and y such that $[x^2 p_{x,y}(x) - x, y] = 0$, then R is commutative.

We first prove the following Lemmas:

Lemma 3.3.7: Let $n>0$, m and r be fixed non negative integers such that $(r,n,m) \neq (0,1,1)$ and let R be an alternative left s-unital ring satisfying the polynomial identity

$$x[x^n, y] = y^r[x^{ym}]y, \text{ for all } x, y \text{ in } R, \quad 3.3.1$$

then R is an s-unital ring.
Proof: Let x and y be arbitrary elements in R. Suppose that R is an alternative s-unital ring. Then there exists an element $e \in R$ such that $ex = x$ and $ey = y$. By replacing x by e in 3.3.1, we get $e[e^n, y] = y^r[e, y^m]y$

$$e(e^n y - ye^n) = y^r(ey^m - y^m e)y$$

$$e(y - ye^n) = y^r(y^m - y^m e)y$$

$$ey - e ye^n = (y^{r+m} - y^{r+m} e)y$$

$$y - ye^n = y^{r+m+1} - y^{r+m} ey$$

$$y - ye^n = y^{r+m+1} - y^{r+m+1}$$

$$y - ye^n = 0.$$

So $y = ye^n \in yR$, for all y in R.

Thus R is an s-unital ring. ■

Lemma 3.3.8: Let $n \geq 0$, r, m be fixed non-negative integers and let R be an alternative ring satisfying the polynomial identity $x[x^n, y] = y^r[x, y^m]y$, for all x, y in R, then $C(R)$ is nil.

Proof: Let $x = e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $y = e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then x and y fail to satisfy the polynomial identity whenever $n > 0$ except for $r = 0, m = 1$.
In this later case we can choose \(x = e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) and \(y = e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \). Hence Lemma 3.1.6 ensures that \(C(R) \subseteq N(R) \).

Lemma 3.3.9: Let \(n > 1, m \) and \(R \) be fixed non-negative integers and let \(R \) be an alternative ring with unity 1. Suppose that \(R \) satisfies the polynomial identity \(x[x^n, y] = y^r[x, y^m]y \), for all \(x, y \) in \(R \). Further, if \(R \) is \(n \)-torsion free then \(N(R) \subseteq Z(R) \).

Proof: Let \(a \in N(R) \) then there exists a positive integer \(p \) such that \(a^k \in Z(R) \) for all \(k \geq p \) and \(p \) minimal. \(\triangleright \)

If \(p = 1 \) then \(a \in Z(R) \).

Now suppose that \(p > 1 \) and \(b = a^{p-1} \).

By replacing \(x \) by \(b \) in the polynomial identity, we get \(b[b^n, y] = y^r[b, y^m]y \), for all \(x, y \) in \(R \).

By using 3.3.3 and the fact that \((p-1)n \geq p \) for \(n > 1 \),

we get \(a^{p-1}[a^{(p-1)n}, y] = y^r[a^{p-1}, y^m]y \)

\[= y^r[b, y^m]y = 0, \text{ for all } y \in R. \] \(\triangleright \)
By replacing x by $1+b$ in the polynomial identity, we get

$$(1 + b)[(1 + b)^n, y] = y^r [1 + b, y^m]y,$$ for all y in R.

As $(1+b)$ is invertible and using 3.3.4, we get

$$[(1 + b)^n, y] = 0,$$ for all y in R. \hspace{1cm} 3.3.5

By using 3.3.3 and 3.3.5, we get $[(1 + b)^n, y] = 0$.

That is, $[1 + nb), y] = 0$.

So, $n[b, y] = 0$, for all y in R.

Since R is n-torsion free, we get $[b, y] = 0$, for all y in R.

So, $b \in Z(R)$.

That is, $a^{p-1} \in Z(R)$.

This contradicts the minimality of p.

So we conclude that $p = 1$ and hence $a \in Z(R)$.

Therefore, $N(R) \subseteq Z(R)$. \hspace{1cm} 3.3.6

Combining 3.3.2 and 3.3.6, we get

$C(R) \subseteq N(R) \subseteq Z(R)$. \hspace{1cm} 3.3.7
Theorem 3.3.1: Let \(n > 1, m, r \) be fixed non-negative integers and let \(R \) be an alternative left unital ring satisfying the polynomial identity \(x[x^n, y] = y^r[x, y^m]y \), for all \(x, y \) in \(R \). Further, if \(R \) is \(n \)-torsion free, then \(R \) is commutative.

Proof: According to Lemma 3.3.7, \(R \) is an s-unital ring.

Therefore, in view of proposition 1 of [35], it is sufficient to prove the theorem for \(R \) with unity.

If \(m = 0 \), then 3.3.1 gives \(x[x^n, y] = 0 \), for all \(x, y \) in \(R \).

Hence \(nx^n[x, y] = 0 \), for all \(x, y \) in \(R \).

By replacing \(x \) by \(x+1 \) and applying Lemma 3.3.1, we obtain \(n[x,y] = 0 \), for all \(x, y \) in \(R \).

Since \(R \) is \(n \)-torsion free, we get \([x,y] = 0 \), for all \(x, y \) in \(R \).

Therefore, \(R \) is commutative.

Now, we consider \(m \geq 1 \). Let \(q = (2^{n+1} - 2) \). Then from 3.3.1 we have

\[
qx[x^n, y] = (2^{n+1} - 2) x[x^n, y]
\]

\[
= 2^{n+1} x[x^n, y] - 2x[x^n, y]
\]

\[
= (2x) [(2x)^n, y] - 2y^r[x, y^m]y
\]

\[
= (2x) [(2x)^n, y] - y^r[(2x), y^m]y
\]
Therefore, \(q x [x^n, y] = 0 \).

So, \(qn x^n [x, y] = 0 \), for all \(x, y \in R \).

By replacing \(qn \) by \(k \) and using Lemma 3.3.1, we obtain \(k [x, y] = 0 \), for all \(x, y \in R \).

Thus \([x^k, y] = k x^{k-1} [x, y] = 0 \), for all \(x, y \in R \).

So \(x^k \in Z(R) \), for all \(x, y \in R \). \hspace{1cm} 3.3.8

Here we distinguish between the two cases.

Case (a): Let \(m > 1 \). Then from 3.3.1 and 3.3.7 we have,

\[
x^n [x^n, y] = m [x, y] y^{r+m}, \text{ for all } x, y \in R.
\]

By replacing \(y \) by \(y^m \), we get \(x^n [x^n, y^m] = m [x, y^m] y^{m(r+m)} \).

So, \(m x^n [x, y] y^{m-1} = m [x, y^m] y^{m(r+m)} \), for all \(x, y \in R \).

By using 3.3.1, we get \(m y^r [x, y^m] y^m = m [x, y^m] y^{m(r+m)} \).

\[
m [x, y^m] y^{m+r} - m [x, y^m] y^{m(r+m)} = 0.
\]

\[
m [x, y^m] y^{r+m} (1 - y^{(m-1)(r+m)}) = 0, \text{ for all } x, y \in R.
\]

By using Lemma 3.3.2, we get
\(m[x, y^m]y^{r+m} (1 - y^{k(m-1)(r+m)}) = 0\), for all \(x, y\) in \(R\). \hspace{1cm} 3.3.9

Now by using 3.3.6 the polynomial identity 3.3.1 becomes

\[nx^n[x, y] = my^{r+m}[x, y] = m[x, y]y^{r+m}.\] 3.3.10

It is well known that \(R\) is isomorphic to a subdirect sum of subdirectly irreducible rings \(R_i, i \in I\), the Index set. Each \(R_i\) satisfies 3.3.1, 3.3.7, 3.3.8, 3.3.9 and 3.3.10 but not necessarily \(n\)-torsion free.

We consider the ring \(R_i, i \in I\). Let \(S\) be the intersection of all nonzero ideals of \(R_i\), then \(S \neq (0)\) and \(Sd = 0\), for any central zero-divisor \(d\).

Let \(a \in N'(R_i)\), the set of all zero-divisors of \(R\) then by using 3.3.9, we have

\[m[x, a^m]a^{r+m} (1 - a^{k(m-1)(r+m)}) = 0\], for all \(x\) in \(R_i\).

Suppose \(m[x, a^m]a^{r+m} \neq 0\), for \(x\) in \(R_i\).

So, \(a^{k(m-1)(r+m)}\) and \(1 - a^{k(m-1)(r+m)}\) are central zerodivisors.

That is, \((0) = S(1 - a^{k(m-1)(r+m)}) = S \neq (0)\), which is a contradiction.

Therefore \(m[x, a^m]a^{r+m} = 0\), for all \(x\) in \(R_i\). \hspace{1cm} 3.3.11

From 3.3.10 and 3.3.11, we have \(nx^n[x, a^m] = m[x, a^m]a^{m(r+m)} = 0\).

Therefore by Lemma 3.3.1, we get \(n[x, a^m] = 0\), for all \(x\) in \(R_i\).
Hence \(nm[x, a]a^{m-1} = 0 \), for all \(x \) in \(R \).

Now by Lemma 3.1.1, we have
\[
n^2x^n[x, a] = n(nx^n[x, a])
\]
\[
= nm[x, a]a^{r+m}, \text{for all } x \text{ in } R.
\]

By replacing \(x \) by \(x+1 \) and applying Lemma 3.3.1, we get
\[
n^2[x, a] = 0, \text{ for all } x \text{ in } R.
\]

But \([x^{n^2}, a] = n^2x^{n^2-1}[x, a]\).

Therefore \([x^{n^2}, a] = 0\), for all \(x \) in \(R \), and \(a \) in \(N'(R) \). \(3.3.12\)

Let \(c \in Z(R) \). Then by 3.3.1, we have
\[
(c^{n+1} - c)x[x^n, y] = c^{n+1}x[x^n, y] - cx[x^n, y].
\]
\[
= (cx)[(cx)^n, y] - cy^r[x, y^n]y.
\]
\[
= (cx)[(cx)^n, y] - y^r[(cx), y^m]y.
\]
\[
= 0, \text{ for all } x, y \text{ in } R.
\]

By applying Lemma 3.1.1, we obtain \(n(c^{n+1} - c)x^n[x^n, y] = 0 \), for all \(x, y \) in \(R \).

By using Lemma 3.3.1, we obtain \(n(c^{n+1} - c)[x, y] = 0 \) which implies
\[
(c^{n+1} - c)[x^n, y] = 0, \text{ for all } x, y \text{ in } R, \text{ and } c \in Z(R) \). \(3.3.13\)
In particular, by 3.3.8, we have

\[(y^{k(n+1)} - y^k)[x^n, y] = 0, \text{ for all } x, y \text{ in } R_i\] \hspace{1cm} 3.3.14

Consider \(y \in R_i\). If \([x^n, y] = 0\) then clearly \([x^{n^2}, y^j - y] = 0\), for all positive integers \(j\) and \(x\) in \(R_i\).

If \([x^{n^2}, y] \neq 0\) then \([x^n, y] \neq 0\). For \([x^n, y] = 0\) implies that \([x^{n^2}, y] = 0\), which is a contradiction.

Since \([x^n, y] \neq 0\), then by 3.3.14 \((y^{k(n+1)} - y^k)\) is a zerodivisor.

Therefore \((y^{kn+1} - y)\) is also a zerodivisor.

Hence by 3.3.12, \([x^{n^2}, y^{kn+1} - y] = 0\), for all \(x, y \text{ in } R_i\). \hspace{1cm} 3.3.15

As each \(R_i\) satisfies 3.3.15, the original ring \(R\) also satisfies 3.3.15. But \(R\) is \(n\)-torsion free. Therefore combining 3.3.15 with Lemma 3.1.1, we finally obtain \([x, y^{kn+1} - y] = 0\), for all \(x, y \text{ in } R\).

Thus \(R\) is commutative by Lemma 3.3.5.

Case (b) : Let \(m = 1\), Then we get \(x[x^n, y] = y^r[x, y]y\), for all \(x, y \in R\).

Thus \(nx^n[x, y] = [x, y]y^{r+1}\), for all \(x, y \in R\). \hspace{1cm} 3.3.16
By replacing x by x^n in 3.3.16, we get
\[nx^{n^2}[x^n, y] = [x^n, y]y^{r+1} \]
\[= nx^{n-1}[x, y]y^{r+1} \]
\[= nx^n[x^n, y], \text{ for all } x, y \text{ in } R. \]

Therefore, \(n(1 - x^{(n-1)n})x^n[x^n, y] = 0, \text{ for all } x, y \text{ in } R. \)

By using Lemma 3.3.2, we get
\[n(1 - x^{k(n-1)n})x^n[x^n, y] = 0, \text{ for all } x, y \text{ in } R. \] 3.3.17

As in case (a), if \(a \in N'(R_i) \) then by 3.3.17, we obtain
\[n(1 - a^{k(n-1)n})a^n[a^n, y] = 0, \text{ for all } y \in R_i. \]

By similar argument as in case (a), we can prove that
\[na^n[a^n, y] = 0, \text{ for all } y \in R_i. \] 3.3.18

Now we have \([a^n, y]y^{r+1} = na^{n^2}[a^n, y] = 0.\)

By using Lemma 3.3.1, we get \([a^n, y] = 0, \text{ for all } y \text{ in } R_i.\)

Therefore, \([a, y]y^{r+1} = a[a^n, y] = 0.\)
So \([a, y] = 0 \), for all \(y \) in \(R_i \) and \(a \in N(R_i) \).

If \(c \in Z(R_i) \), then as in case (a), we obtain \((c^{n+1} - c) [x, y] = 0 \), for all \(x, y \) in \(R_i \).

In particular by 3.3.8, we have \((x^{k(n+1)} - x^k) [x, y] = 0 \), for all \(x, y \) in \(R_i \).

If \([x, y] = 0 \) for all \(x, y \) in \(R_i \), then \(R \) satisfies \([x, y] = 0 \), for all \(x, y \) in \(R \). Therefore, \(R \) is commutative.

Now if for each \(x, y \) in \(R_i \), \([x, y] \neq 0 \) then \((x^{kn+1} - x) \in N(R_i) \) and hence

\[
(x^{kn+1} - x) \in N(R) .
\]

But the identity 3.3.19 is satisfied by the original ring \(R \).

Therefore, \((x^{kn+1} - x, y) = 0 \), for all \(x, y \) in \(R \).

Hence \(R \) is commutative by Lemma 3.3.5.

In Theorem 3.3.1, \(n \)-torsion free property is essential. Consider the following example:

Example 3.3.1 : Let
\[
A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}
\]
be the elements of the ring of all 3x3 matrices over \(Z_2 \), the ring of integers mod 2. If \(R \) is the ring generated by the matrices \(A, B, C \), then using Dooroh construction with \(Z_2 \), we
obtain with unity 1. Then R is not commutative and satisfies $[x^2, y] = [x, y^2]$, for all x, y in R. ■