Chapter 2

Review of Literature
CHAPTER 2
REVIEW OF LITERATURE

2.1 INTRODUCTION
Several studies have examined the theories related to the fertility transition in the world. Many researchers have also explored the causes of fertility transition, its pace over time, and rural-urban difference in transition in the contexts of various countries. To examine the fertility transition in West Bengal it is necessary to take an overview of the fertility transition in these countries as well as fertility transition in India and its different states.

2.2 FERTILITY TRANSITION IN THE WORLD
Bulatao (1981) emphasized on parents' anticipation on different rewards and costs from children, and that these change over the family building cycle. This major study covered representative sample of 1600 and 400 of their husbands from Philippines, Republic of Korea and United States from 1975-76 and asked 12 reasons for wanting another child and 10 reasons for not wanting another child and rated them. The study found that wanting a boy remained important for later children only in Korea. Wanting a girl, however, was also important at the second child in the Philippines and at the first child in United States. Stages in family formation do appear definable from the perspective of values attached to children. The first child is desired to establish the family as an emotionally changed for bringing the spouse closer, love, care, fun and also as a continuing concern of carrying family name and the second child consolidates the gain. Third and fourth children are desired to provide a balance between sexes. The financial burden was significantly less important among Filipinos and more important among Koreans. It increases from the first child to the fifth child but in the United States its costs peak at the fourth child. Those wanting four children chose economic help more often and wanting a girl less often. Values and disvalues vary across parities, each reduction in the fertility of successive cohort should involve different values and disvalues, the factors
causing the fertility transition whatever these may be should relate to patterns observed in family formation, such that these factors should first operate on values and disvalues connected with higher order births and then on the values and disvalues with progressive lower birth orders. Therefore, the transition led to avoiding of higher order births first, implying that the values and disvalues for these births are those initially affected. As the transition progresses, lower order births are also avoided and so on.

A study had been done by Cleland and Rodriguez (1988) from the World Fertility Surveys (1974 and 1982) in 34 countries (Africa: 9, Asia: 10 India was not included, Caribbean: 4, Latin America: 9, North Africa and West Asia: 5, Europe: 1) on the effect of parental education on marital fertility in developing countries. It was found that wife’s education on marital fertility has stronger influence than husband’s education. Region is a stronger predictor of the effect of education on fertility than the development. In predominantly rural countries, the effect of higher education is to decrease the marital fertility.

Pritchett (1994) has discussed differences across countries in respect of desired fertility of couples, by using the World Fertility Survey and Demographic Health Survey data from different countries in the world. The results reveal that in countries where fertility is high, women want more children. Excess or unwanted fertility plays only a little role in explaining fertility differences. The level of contraceptive use, measures of contraceptive availability, and family planning effort have little impact on fertility after controlling for fertility desire. According to the study, fertility is inelastic with respect to contraceptive costs because contraceptive costs are too small in comparison to the costs of bringing up children. The household survey evidence supports that contraceptive access has little effect on fertility levels. Therefore, low level of desired fertility appears to be both necessary and sufficient for low fertility.

In between late 1950s and late 1970s, fertility declined rapidly in eighty percent of world population (Caldwell, 2001). Notable declined occurred in North America, the Eastern Europe and Western Asia in 1960-65; Australia and Latin America in 1965-70; and
spread to remaining part of Asia and North Africa in 1970-75. The study focused on high fertility transition in high income countries, developing world and indigenous minority among English speaking nations. The results show that fertility control has influence on other behaviours and attitudes of couples in addition to fertility reduction. A clear pattern has been observed in fertility transition where developed countries moved to low fertility followed by developing world. It reveals that children became the economic burden to parents in developing countries and easy access to effective form of fertility regulation helped to curb the overall fertility

While the importance of values and disvalues of children in fertility desires and behaviour has thus been well accepted, it has also been observed that such values differ between rural and urban areas or there is some gap between rural and urban perceptions on value of children. Quite a few empirical investigations have brought out such gaps.

Mosk (1980) studied rural-urban fertility differences through decomposition. He found that there were separate differences in nuptiality and marital fertility which developed the gap in rural-urban fertility transition. Later, he applied this technique to national and provincial statistics for Japan and Sweden and observed that there are some features of rural-urban differences which hold for both countries, but it is also demonstrated that because the Japanese and Swedish fertility transitions were markedly dissimilar, there are salient contrasts in the relationship between the magnitude and composition of the rural-urban differences and the stage reached in each country during its fertility transition.

Hollerbach (1983) discussed the fertility decision making process through perception of supply, demand and fertility regulation cost. He considered that fertility decision involves trade off between perceived costs and benefits of children, contraception and abortion, as well as perceived fecundity. High fertility is associated with economic values provided by children as labour households assistance, old age security, continued economic support to family. He examined various models like ‘maximization of utility and satisfaction’, the expectancy x value model’, ‘the judgment-valuation-integration-choice model’ and found that fertility decision is associated with life course and every birth is
influenced with different sets of motivational, cultural, and family conditions. The decision process changes radically from passive to active decision with threshold of economic consciousness of couples.

Mueller (1972) conceptualised and measured the economic cost and value of children through the private cost and gains experienced by parents among 2200 Taiwanese husbands whose wife was not aged more than 42 years from Taiwan study in 1969. She used cost sensitivity index and found that it is positively related to education of parents and hence to educational aspirations and have a significant bearing on fertility decisions. Education of children is viewed as an important opportunity cost of a large family. Most of the Taiwanese men perceived that with increase in per capita income, parents do not desire for an additional child which will reduce their standard of living. The study concluded that reproductive decision is not a decision to have a child or not but rather more on birth spacing or postponement and regulation and limiting the fertility. Married couples controlled the childbearing decision and distinguished between quality and quantity of children. However, common policy goals are mostly on quantity of children but more focus on quality over quantity reduces overall demand.

A study was conducted by Barkat-e-Khuda (1977) in Barkait village in Comilla district in Bangladesh among 146 males and 146 females to understand the value of children. The results show that though fertility is high in the village practically no attempt is made to regulate fertility. Nearly two-third of respondents preferred to have five or more children and respondents feel the matter is ‘up to God’. Most of respondents considered that large family constitutes a heavy economic burden but also stated economic advantages to have a large family like ‘continuation of family name’ and ‘support at old age’. It shows that food is the only cost for the children in the village and once they are grown up they are mostly engaged in agricultural work as child-labourer and earn money for family. Even girls are also engaged in several agricultural works. In rural Bangladesh, the net flow of wealth is usually from child to parents. Parents cared children in initial years and expect returns (in cash and kind) from them once they are grown up.
Rele and Alam (1991) studied the fertility transition in India with empirical evidences from various sources. The study estimated that fertility among rural Bengali Hindu women during 1945-46 was the second highest (6.2) after Punjab rural (7.2) compared to other rural areas in Indian provinces like Mysore and Madhya Pradesh. They explained the fertility transition in India which set in with rapid modernisation on an extensive scale in the middle of the twentieth century with western system of education and changed the attitude and beliefs over time and have altered fertility and nuptiality pattern. They also examined the rural marital fertility in 11 states from two large scale surveys conducted in 1959 and 1972 and found initially fertility had increased among younger generation due to decrease in breast feeding period, sexual abstinence, incidence of spontaneous foetal loss and involuntary sterility. They also explain the transition through Coale’s indices and found that marital fertility of older women declined due to availability of family planning in the first phase and in second phase increase in female education, per capita income, woman’s age at marriage and decline in infant mortality contributed to fertility decline. In the third phase, in states like Kerala, Tamil Nadu, Maharastra and West Bengal index of marital fertility among young women declined.

South Korea completed its demographic transition quite rapidly, within 35 years. The transition started after the Korean war and progressed to replacement level of fertility by mid 1980’s (Hwan, 1993). The average family began to feel the burden of larger number of children. Due to strong population pressure, extreme poverty, with the feeling of desperation urban families curbed their fertility first. The most important factors were rising age at marriage in 1960-65 and initiation of family planning programme in 1962. It spread to the rural areas in the mid 1960’s and low fertility behaviour became the norm among all sections of the population.

In the past few decades, China has experienced a remarkable fertility transition from a level of about six children per woman down to less than two children per woman. A study examined the gap between rural and urban fertility in China (Coale and Freedman, 1993). According to them the total fertility is mostly dominated by the rural fertility of China because almost 80 percent populations are residing in rural areas.
Another study examined the Chinese fertility transition and divided it into six phases; initial high fertility period (1949-57) with little urban rural difference, the great leap forward (1958-67), drop in CBR and also TFR from 6.2 to 3.3, post-famine recovery (1962-70) during which urban rural differentials appeared and increased rapidly, rapid fertility decline (1971-79) with introduction of national population policy, stagnation period (1980-89) where fertility decline slowed down, and below replacement fertility period (1990-) with narrowing gap between fertility in rural and urban areas (Ping, 2000). Feeney and Tu (1987) also noticed that in 1955, PPPRs for rural and urban areas were almost the same. The greater decline in higher parities started in urban China in 1970’s. Differences in proportion married and in socio-economic structure in rural and urban areas in China were also observed (Retherford et al., 2005).

Zhao (2001) also emphasized that urban fertility in China was below replacement level since 1990s. The postponement of childbearing led to a fall in fertility level at young ages and pushed fertility curve toward higher ages; however, the change in fertility pattern was largely dominated by limiting high parity births. This was a combined outcome of many political, economic and social factors. The far below replacement level fertility lead to local labour shortage in the major cities in China and enhanced rural to urban migration.

Yankey (1973) studied marriage as a variable, which affects formation or dissolution of sexual union and coitus and reproduction is socially approved only within it, to examine the fertility behaviour. He considered marital union as a part of cultural pattern and an intermediate variable between culture and fertility. It was observed that delayed marriage helps to curb fertility but it also increase probability of illegitimate fertility in absence of contraceptive in developing countries. Widowhood and divorce have very small impact on fertility because negligible proportions of women in reproductive ages are widowed or divorced. He pointed out that age at marriage reduction policy may help as fertility reduction policy in developing countries. Further, it is necessary to motivate young married women to use birth control to reduce fertility.
fones and Leete (2002) estimated that Asian countries experienced rapid transition from high to relatively low mortality and fertility during second half of the twentieth century which is associated with great economic and social change, specially in East and Southeast Asia. He focused on family planning programmes in different Asian countries and their impact on fertility decline. He found that in family planning programme in China, Indonesia and Vietnam elements of coercion existed whereas, in India during 1975-77 family planning programme was also characterised by coercion. The study shows that success of family planning programme in most of the countries was supported by changes in demand for children caused by rapid social development in education sector. An effective family planning programme must respond to individual need and promote sustainability take account of gender perspective and male involvement in family planning.

A large scale survey was conducted in 17 locations in Bangladesh, including rural as well as urban areas among 2825 individuals (Malonet et al., 1981). The study suggested that fertility among Muslim women is always higher compared to their Hindu counterparts. The most fertile group is rural middle class Muslim cultivators. Further, the fertility rate is higher among prosperous rural villagers. However, men as well as women with at least secondary education have low fertility. Rural professionals and religious leaders have higher fertility rate than those engaged in modern occupation and living in urban areas in the study area. The study reveals that acceptance of contraceptive is high among urban couples. It was also revealed that men are accepting more of traditional methods whereas; women are accepting more of modern contraceptive methods.

Another study on fertility decline in rural Bangladesh shows that fertility declined from six children to 3.3 children from 1980 to 1996 and this rapid decline was made possible by the national family planning programme (Caldwell and Barkat-e-Khuda, 2000). They interviewed 67 women in their reproductive age group and divided in to two groups those who were practicing family planning and those who had not practiced family planning for at least four years in Abhaynagar thana area in rural Bangladesh. The study found that contraceptive services are available in a form that is easy to maintain, relatively
confidential and easily accessible. Respondents stated that substantial changes in social
and economic sector have decreased any advantages that previously existed in producing
a large family. Majority of respondents agreed that cost of children had risen and benefits
had declined. Parents aspire higher status and prestigious jobs for their children which is
available through better education and education is expensive for agrarian families. Even,
if parents are unable to provide the necessary help for their advancement, children feel
less obligation to support their parents in their old age. Therefore high contraceptive
prevalence reflects socio-economic changes that have minimized the benefits of large
families and changed the perceived need and value of children.

Van de Walle (1978) has examined the fertility decline from the Civil Registration
System data and showed that this occurred due to individual motivations for the benefit
of a collective point of view. Fertility has declined faster after 1900 due to wide adoption
of fertility control among rural population in the country. Certainly, there was significant
acceptance of family planning among influential social class in France for long time but
the behaviour of elites was diffused to the masses slowly. The study shows significant
negative correlation between marital fertility and proportion married. French have always
sought to limit natural increase either by delaying or avoiding marriage or by limiting
fertility within marriage. There was clear regional as well as rural-urban difference in
fertility transition in the country. Brittany region with rural poverty and high mortality
experiences high fertility than Normany, which has low fertility with high income and
low mortality.

A study in two urban migrants’ settlements in Kumashi in Ghana explained the
interrelated process of fertility adjustment and found that migration from rural to urban
places changes fertility outcomes (White et al., 2002). Evidences from Kumashi Peri-
Urban survey in 1998 revealed that migrants have higher cumulative fertility than second
generation residence. However, migrant women have higher fertility than urban women
but have lower fertility than rural averages in Ghana. Therefore, the theory of adaptation
and socialization played an important role to diffuse the low fertility norms to rural
migrants in urban area.
2.3 FERTILITY TRANSITION IN INDIA

Fertility transition had begun in India with improvement in female literacy and child survival. The Sample Registration System (SRS) estimates that there was substantial decline in the total fertility rate between 1972 to 1984 from 5.7 to 4.5, and further to 1.9 in 2007 (India, Registrar General, 1999; 2008). There is clear distinction in fertility transition in northern and southern states in India. There has been extensive research on the causes of transition. Demographers and social scientists paid more attention on fertility transition in India and the process, nature and differentials are well documented in demographic literature (Driver, 1963; Mandelbaum, 1974; Srinivasan, 1986, 1989, 1995, 1997; Fox, 1982; Srikantan and Bhate, 1982; Fawcett, 1986; Sharma, 1987; Mahadevan and Jayasree, 1989; Roy and Parasuraman, 1996; Hutter et al., 1996; Mutharayappa et al., 1997; Gondotra et al., 1998, Pathak et al., 1998; Reed et al., 1999; Retherford et al., 2001; Guilmoto and Rajan, 2002; Patel, 2006).

In 1954-55, Mathur et al. (1967) examined the fertility behaviour among 1499 married women in Jaipur city in Rajasthan. The study estimated that considerable progress in education has helped to decrease the percentage of women married below 15 years of age from 14 percent in 1921 to 3.7 percent in 1951 and further to 3.2 percent in 1954. However, short interval observed between marriage and consummation and the age at first birth (17.7 years) and remained the same over time. The average number of living children per women was 2.4 but no marked association between education and fertility was observed. More than eighty percent of respondents desired to have two to four children and only six percent of women had knowledge of family planning methods available in the city. Similar studies were also observed fertility transition and fertility pattern in different cities in India like, Lucknow (Husain, 1970), Bombay (Rele and Kanitkar, 1980), and Delhi (Gulati, 1988).

Pathak and Murthy (1987) used the Sample Registration System data to study the rural-urban fertility differentials in India by states and to assess the role of the family planning program in fertility change in rural and urban areas during 1970 to 1980. There was a considerable decline in Crude Birth Rate (CBR), Total Fertility Rate (TFR) and Total
Marital Fertility Rate (TMFR) in both rural and urban areas of all the states and India. The urban rates always were lower than the rural rates. Rural-urban differentials clearly existed during the 1970s. The difference has increased in some states and either declining or holding constant in the remaining states. They estimated that the relative contributions to the total fertility at the 15-19 and 35-44 age groups were much higher in the rural than in the urban areas, it was different in the case of the 30-34 age group. In the case of Kerala, Punjab, Karnataka (1980), and Gujarat (1981), the urban contributions to the fertility in the 15-19 ages were observed more in urban than in rural areas. Most of the fertility decline in both rural and urban areas was due to an increase in the acceptance of deliberate fertility control practices. The impact of the effect of increasing marriage age on fertility decline was modest in both rural and urban areas.

Richard and Rao (1995) examined the influence of age at marriage and family planning on fertility in Vellore town and K. V. Kuppam block in Tamil Nadu. They interviewed 7683 and 6521 married women in rural and urban areas respectively. The results revealed that age at marriage is low in rural areas (17.2 years) compared to urban areas (18.3 years) and 36.6 percent brides in rural and 29.0 percent in urban areas are married before attaining 18 years. There is a large difference in prevalence of family planning practices between rural (21.4 percent) and urban (34.0 percent) areas. The findings show that family planning was adopted after having a fixed number of children irrespective of age at marriage of woman. They used multiple classification analysis and found that those who married early had more number of children compared to who married late.

There were many studies on fertility transition conducted in Karnataka (Rao et al., 1983; Sekher et al., 2001), Andhra Pradesh (Ramachandran and Ramesh, 2005; James and Subramanian, 2005) and Kerala (Zachariah, 1984). Krishnamoorthy et al. (2005) estimated that Tamil Nadu has reached replacement level of fertility in 1990s and TFR in the state always remained below the national average. The rise in age at marriage contributed to the substantial decline in TFR till 1980s and later increase in contraceptive use brought down the fertility level. Results from focus group discussion in eight villages, among two groups of women aged between 15-29 and 30 and above, in
Coimbatore, Salem and Chennai-MGR districts reveal that economic condition has deteriorated and cost of living has increased which demands quality of children not quantity. Young women want small family, preferably two children and these changes initiated a decade before the survey. Economic factors attributed the most in the change in decision making and parents now desire a better quality of life for their children. Moreover, programmes have influenced to adopt the small family to young generation. Other than the higher castes, middle socio-economic classes in rural areas are also aware of social change and desire to have a small family. This clearly denotes that in spite of low socio-economic conditions, Tamil Nadu has experienced fertility transition in India.

Reddy (1996) studied fertility and family planning behaviour among 280 Hindus and Muslim couples in rural and urban areas in Mahaboobnagar district in Andhra Pradesh during 1985-86. The study showed that knowledge regarding family planning was quite high among Hindus (84 percent) as well as among Muslims (82 percent) but average parity among Hindus was 4.42; on the other hand, it was 5.64 among Muslims. Another similar study among 400 rural women in Chandragiri taluk in Andhra Pradesh showed the fertility difference among social classes. It revealed that irrespective of different social classes, family planning acceptors have less number of children than non-acceptors.

Alagarajan and Kulkarni (1998) examined fertility differential by religion in Kerala through Period Parity Progression Ratio analysis from the first round of National Family Health Survey, 1992-93 data. The study revealed that tendency to go for higher order births has substantially declined during 1970s and 1980s in the state. There was difference in fall in fertility across various religious groups, majority of Hindu and Christians stopped childbearing after second child but Muslims continued till the fourth. Although fertility show a downward trend but there is a lag of 10-15 years among Muslim compared to other two dominant religions like Hindus and Christians.

A similar study in Uttar Pradesh shows the difference in childbearing and timing in fertility transition with educational level of women (Mishra et al., 1999). The study used

\[TH-16747 \]
the NFHS-1 1992-93 data and Period Parity Progression Ratios for analysis. The results show that overall fertility has not declined much in the state, it is only the third and higher order births has declined in late 1980s. Universally, women moved to second parity across all educational classes. While illiterate women moved to fourth birth, high school educated women show some sign of stopping childbearing after second or third birth. Further it shows that half of the higher educated population began to stop childbearing at two or three births by 1972-76 whereas primary/middle educated women reached the same level in 1987-91. Therefore, there is a gap of 15 years between primary/middle educated women and higher educated women in fertility transition in the state.

2.4 FERTILITY TRANSITION IN WEST BENGAL: THE RURAL-URBAN GAP

In West Bengal, major fertility decline occurred in the 1980's, and further sharp decline in TFR was observed in the late 1990's. Urban fertility had started decline much earlier during the time of independence and reached the replacement level (India, Registrar General, 1999, 2004b). The gap between rural and urban fertility provides a thought to examine the pace and the time of the fertility transition in West Bengal. West Bengal has the highest level of traditional contraceptive user among states of India (IIPS and ORC Macro, 2001a, 2001b).

To show the urban-rural difference, some evidence comes from a study of women in Kolkata (Calcutta) and in a county region outside Kolkata. Davis (1950) estimated average annual births per 1000 women of age group 15-39 years, for 1921-30, for Kolkata (94) and rest of Bengal (134). Similarly, estimates through child-woman ratio also reveal the rural urban difference in Kolkata and rest of Bengal. He commented that child-woman ratio may exaggerate the rural-urban difference, because, infant mortality is worse in city and urban women return to their village for delivery. The same study indicates that the urban use of contraception affects fertility, because with age held constant, the women of upper class sections have only one-thirds of live births that the women in the lower middle class have. Also, urban women from lower middle class have only four-fifth of the fertility of their rural counterparts.
Ghosh (1956) estimated the birth rate in undivided Bengal during 1911-50 from registered birth statistics along with other provinces like Assam, Bihar, Orissa, Uttar Pradesh and Madhya Pradesh. The study found that there was a steady decline in the birth rate in Bengal; however, there is a high rate of increase in the total population. The CBR fell from 37.6 in 1901-10 to 20.5 in 1941-50. The study attempted to estimate the rate of omission of births due to deteriorating system of registration. The revised figures also denoted the declining trend in the birth rate, from 41.8 in 1911-20 to 35.4 in 1941-50. Ghosh also estimated TMFR for the women aged 15-50 years and similarly, it also depicts the same declining trend from 237 in 1911-20, to 207 in 1921-30 and, 191 in 141-50 with a small increase in 1931-40 to 211; however, estimated Age Specific Marital Fertility Rate for India was always higher than Bengal throughout the study period.

Raman (1976) estimated CEB and prevalence of family planning from Calcutta (Kolkata) Fertility Survey data (1970) among women in reproductive ages belonging to different caste, religious groups and with different mother tongue and living in slum and non-slum areas in Kolkata. The study pointed out that the average number of children ever born to a woman in slum areas in Kolkata was 3.7 while it was 3.1 in non-slum areas during the survey. To explore the causes of difference in fertility, he found that only at nine years of education of women family size (at least 3 children) is reduced. Fertility was higher among Hindi-speaking Muslims than Hindus and those who have migrated from rural areas. The practice of family planning decreases as the educational level increases for all social groups except Hindi-speaking Hindus. But there was no difference in practice of family planning among Hindi-speaking illiterate Hindus and Muslims from the slum localities. In the non-slum areas, high-caste Bengalis accept contraception less than other-caste Bengalis, on the other hand, Muslims showed a low rate of family planning practice during the survey. The study revealed that traditional family planning methods like abstinence and coitus interruptus were more popular among illiterate women. There was very low acceptance of sterilisation among the non-Bengali slum population. Education was found to be one of the most important factors in the acceptance of family planning and determining the family size.
Nag (1984) examined equity-fertility relationship by comparing economic and social aspects of Kerala and West Bengal, two states of India which have experienced different rates of fertility decline. The main focus of the study was rural population of these two states and revealed that the greater improvement in economic conditions of the poor in Kerala through increase in absolute income and household assets was associated with greater fertility decline in the state than West Bengal. In addition, increase in educational level of rural women increases opportunity to join in labour force.

Basu and Amin (2000) tried to understand through diffusion theory the fertility decline in greater Bengal (Bangladesh and West Bengal, the Bengali-speaking belt). They argued that fertility has declined rapidly in Bangladesh without meeting the standard precondition like socio-economic progress, major fall in mortality, and substantial change in women’s status. Moreover, being a Muslim country, it was characterised with low use of contraception. Similarly, fertility level was always well below the national average in West Bengal in India with unusually high levels of use of traditional method. Besides, West Bengal has never had effective family planning programme. The decline in fertility began in the 1960s among the elites in the region. Bengal experienced the diffusion progress through homogeneous cultural network with easy transmission of new ideas and thoughts from upper class to the mass. On the other hand with heterogeneity in religion, policy and political ideas, due to common language the flow of the diffusion remains.

Amin et al. (2002) explained that political boundaries are the recent development but diffusion in culture through common language persists beyond the borders on contraceptive use. Data from the Indian National Family Health Survey, 1992-93 and Bangladesh Demographic and Health Survey, 1993-94 shows that West Bengal has higher use of contraceptive compared to Bangladesh, but with two different settings in choice of methods: sterilisation and traditional methods dominate in West Bengal but in Bangladesh temporary modern methods are more popular. A multi-level analysis shows that districts in West Bengal and Bangladesh that lie along the border and share the same language are significantly positive outliers for contraceptive use. The post-partition migration in the border districts also influences the contraceptive practice. Focus group
discussions show that the outlier districts show a greater degree of openness to
development activities. Non-border districts (with Bangladesh) in West Bengal have
lower knowledge on modern methods of contraceptives and traditional attitudes towards
such issues.

Mookerjee (2005) has examined how poor women in West Bengal balance the idea of
modernization and tradition in their choice to use birth control and on family size. She
interviewed almost ninety women in three government family planning clinics in Kolkata
and its suburbs to find out how these women negotiate their decisions with members of
family and themselves. The study revealed that many times women come to clinic
without informing their in-laws and often husband. The results show that to rear too
many children needs more resources and it is difficult to bring up all of them equally.
Most of the women revealed during the study that they calculate the present and probable
income in future and decide to have children or use fertility control based on the kind of
life they want to have and to provide for their children.

Mondal et al. (2007) conducted a study among 671 women in Baruipur block in 24
Paragana district in West Bengal to examine the impact of religious faith and female
literacy on fertility. The study revealed that number of years of schooling of mothers has
no impact on fertility control as a whole. But when impact of years of schooling of
mothers on fertility was analysed by religion, it was found that the number of births in the
past two years was less among educated Hindu mothers than illiterate Hindus but this
difference was not found among Muslims. Therefore, influence of religious faith has
undermined the impact of literacy.

A study based on the SRS and the NFHS-2 data showed that there is substantial gap in
fertility level between Kolkata, other urban centres and rural areas in West Bengal
(Mondal and Roy, 2009). They found that the rural-urban fertility differential in West
Bengal exists mainly due to variation in socio-economic, demographic and other factors
that prevail in rural and urban set ups. They pointed out that the absence of significant
fertility difference between Kolkata and other urban areas in the state is small because
most of the urban centres are located near to Kolkata and are strongly influenced by culture of Kolkata. The multivariate analysis results show that difference in fertility level is mostly explained by level of education and exposure to mass media among women. But they also argued that these variables are also dependent on cultural factors and women who live in Kolkata and other urban areas inherit different culture and environment and these cultural traits are yet to reach rural West Bengal.

2.5 RESEARCH GAPS IN RURAL-URBAN FERTILITY DECLINE

The above studies mainly focused on trends in fertility transition and influence of different factors on fertility transition in different areas across the world and India. The rural-urban gap in fertility is mentioned in some studies in West Bengal in recent years. Across the border, similarities between Bangladesh and West Bengal were examined but the rural-urban diffusion process was not examined within the state. Therefore, the well known rural-urban fertility gap in West Bengal needs to be addressed. The difference in timing, nature and extent in the fertility transition between rural and urban areas in West Bengal has caused an area of concern among researchers calling for further exploration in this area of research.