LIST OF ABBREVIATIONS

ACA - Ant Colony Algorithm
BA - Bee Algorithm
V_i - Bus voltage
CSAPSO - Chaotic Self Adaptive Particle Swarm Optimization
CEED - Combined Economic Emission Dispatch
g_k - Conductance of the conductor
c_1, c_2 - constants
DE - Differential Evolution
ELD - Economic Load Dispatch
$F_2(x)$ - Emission minimization
EED - Environment Economic Dispatch
FFA - Firefly Algorithm
FACTS - Flexible AC Transmission System
FPA - Flower Pollination Algorithm
$F_1(x)$ - Fuel cost of generation
GA - Genetic Algorithm
HS - Harmony Search
hr - Hour
IP - Interior Point
$F_4(x)$ - L-index minimization
LP - Linear Programming
$F_3(x)$ - Loss minimization
Q_{gi}^{min} - Lower limit of Reactive Power Generation
P_{gi}^{min} - Lower limit of Real Power Generation
V_{i}^{max} - Maximum bus voltage limit
UPFC$_i^{\text{max}}$ - Maximum size of UPFC
T_i^{max} - Maximum Transformer Tap Settings
X_{max} - Maximum value of control variable
MVAR - Mega Volt Ampere reactive
MW - Mega Watt
V_i^{min} - Minimum bus voltage limit
UPFC$_i^{\text{min}}$ - Minimum size of UPFC
T_i^{min} - Minimum Transformer Tap Settings
X_{min} - Minimum value of control variable
MOEA - Multi Objective Evolutionary Algorithm
NLP - Non Linear Programming
nbr - Number of branch or transmission line
NCV - Number of control variables
NG - Number of generators
NT - Number of transformers
N_{UPFC} - Number of UPFC
OPF - Optimal Power Flow
PSO - Particle Swarm Optimization
QP - Quadratic Programming
Q_D - Reactive Power Demand
Q_G - Reactive Power Generation
Q_{gi} - Reactive Power Generation
Q_L - Reactive Power Loss
Q_C - Reactive power support in the bus
RGA - Real coded Genetic Algorithm
P_D - Real Power Demand
P_g - Real power generation
P_G - Real Power Generation
P_{gi} - Real Power Generation
P_L - Real Power Loss
\(V_j \) - Receiving end bus voltage magnitude
\(\Theta_j \) - Receiving End Voltage Angles
\(V_i \) - Sending end bus voltage magnitude
\(\Theta_i \) - Sending End Voltage Angles
SA - Simulated Annealing
STATCOM - Static Synchronous Compensator
SSSC - Static Synchronous Series Compensator
\(T \) - Transformer tap position
\(T_i \) - Transformer Tap Settings
UPFC - Unified Power Flow Controller
\(Q_{gi}^{\text{max}} \) - Upper limit of Reactive Power Generation
\(P_{gi}^{\text{max}} \) - Upper limit of Real Power Generation
\(V_s \) - Voltage magnitude of generator bus
\(w \) - Weight