
Chapter 4 

Fusion Barrier Distribution: 
Concept and Experiments 

As we sa.w in the last chapter the solution of the coupled equations in the simplified 

approach is equivalent to splitting of the single interaction barrier into a spectrum of 

barriers which are weighted with some factors say Wb (=iUbO i2) with the condition 

that ~b Wb = 1. This is the eigen channel approach where each eigen channel is 

associa.ted with a potential V (r) + Ab which forms a potential barrier of height 

Bb = V(RB ) + Ab at the interaction distance RB . This spectrum of barriers in the 

eigen channel approach is referred to as the "barrier distribution" and is supposed to 

contain all information about the channels which are coupled. Rowley et al., [1, 2] 

proposed in 1991 that the distribution of barriers could be extracted directly from 

precise fusion cross section measurement through a simple and elegant mathematical 

transformation. Subsequent measurements offusion barrier distribution have clearly 

shown characteristic features reflecting the coupling specific to the internal structure 

of the colliding nuclei demonstrating a new richness in this field. 

In this chapter we discuss the theoretical concepts of barrier distribution and 

its experimental realisation. Attempts to extract barrier distribution from extreme 

back angle quasi-elastic scattering excitation function are also discussed. These two 

techniques can be used in a complimentary manner. A review of the experimental 

barrier distribution for reactions that highlight specific couplings is given. The im-

64 



Fusion Barrier Distribution 65 

portance of exact coupled channel calculations in explaining the barrier distributions 

is also highlighted. 

4.1 Representation of the Barrier Distribution 

In the case of a rotational nucleus, where the classical picture of a deformed object 

oriented in different directions in space is appropriate, it is easy to visualise and 

appreciate the existence of a distribution of fusion barriers. The same is not obvious 

for a vibrational nuclei, hence one has to see then what is the situation in a general 

case. Classically, the transmission probability is a step function which goes from one 

to zero at an energy equal to the height of the barrier. Tunneling effects smear the 

step function into a smoother function (for a parabolic barrier this smooth function 

is a Fermi function). Hence the energy derivative of the transmission probability is 

a narrow peak centered around the barrier energy. If several barriers are present 

due to channel couplings, the energy derivative of the transmission probability will 

become a series of peaks corresponding to the energies of the different barriers. The 

heights of the peaks give the relative weights which the different barriers contribute 

to the total transmission probability. In the eigen channel approach we can assume 

that the total fusion cross section is the weighted sum of the transmission through 

each eigen barrier. If the barrier for each eigen channel is located at the same inter 

nuclear distance RB , the transmission coefficient can be recovered from the fusion 

excitation function provided also that the angular momentum dependence of the 

transmission coefficient Te, can be reproduced by a shift in energy i. e. 

where E' = E _ e(£+1)1i2 
2J.LR~ 

Te(E) = To(E') 

Making this substitution for Te in the equation, 

( 4.1) 

(4.2) 
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we can easily arrive at the following form for the transmission coefficient; 

T. (E) = _1_ (d EICJfuS(EI)) 
£ 7fR~ dE' 

(4.3) 

As said before the transmission function displays a jump each time the energy 

goes past one of the barriers. This property is exploited to obtain the barrier dis

tribution by further differentiation with respect to energy. 

dT(E) 1 d2 

dE = 7fR~ dE2[ECJf us (E)] (4.4) 

The transmission coefficient and the corresponding barrier distribution for the 

160 + 144Sm case is shown in Fig. 4.l. 

Putting in the classical form for fusion cross section in the above formula yields 

6-functions at the energies corresponding to the barriers which are weighted with 

(7fR1 x Wb). This is the barrier distribution D(E, Bb). To include tunneling we plug 

in the Wong's formula for fusion cross section. Double differentiation of ECJfus(E) 

with respect to energy again yields 

(4.5) 

where x = (27f /nwo)(E - Bb) and Gf (E, Bb) is a function which peaks at each 

barrier. The function Gf (E, Bb) satisfies J Gf (x)dx = 1 and they become 6 function 

in the limit nwo -+ o. The full width at half maximum of Gf (E, Bb) is 

llEpWHM = 0.56 nwo ~ 2 - 3 MeV (4.6) 

Thus we have an expression for the fusion barrier distribution in a general case. 

(4.7) 

4.1.1 Df (E) from Experimental Data 

In the case of experimental data the derivative cannot be obtained analytically, 

but they have to be approximated with a point difference formula. For the second 
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Figure 4.1: The transmission coefficient T£ as a function of energy for the system 
16 0 + 144Sm and the corresponding barrier distribution for the uncoupled and coupled 
case. 

derivative with respect to energy of Eafus(E) the point difference formula is given 

by 
Df(E) = Eafus(E + 6.E) - 2Eafus(E) + Eafus(E - 6.E) (4.8) 

6.E2 

where 6.E is the energy step used to calculate the second derivative. Obviously a 

small energy step 6.E approximates the analytic derivative better and increases the 

sensitivity of the structure. However for a fixed experimental uncertainty b of the 

cross section the absolute experimental error in Df (E) is given by 

(4.9) 

One can see that the errors increase with energy and cross section. So the barrier 

distribution extracted from experimental cross section is less defined at high energies 

where cross sections are higher. Also a smaller bE which is required for higher sen

sitivity increases the error. Thus a compromise has to be found between sensitivity 
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and precision. Generally in most cases a flE of 2 Me V is used as a good choice as 

the distribution has an inherent width of 2 - 3 Me V due to tunneling. 

The formalism presented above is strictly valid in the eigen channel model of 

fusion which results from the solution of the coupled channels equation in the sim

plified approach. This approach ignores that the different fusion barriers can have 

different radii. However both full theoretical calculations and experimental data 

clearly indicate that evaluating d2(Ea)jdE2 generates a "distribution" with well 

defined structures, giving significant insight into the role of the target and projectile 

structure in the fusion process. This form of representation of the experimental 

data has the advantage of clean identification of the coupling scheme which is not 

possible by observing the fusion cross section alone. 

However the extraction of the second derivative from the experimental cross 

section is not a trivial job. It amounts to taking small differences between large 

cross sections. One needs very high quality data to be able to do so. The quality 

of data is basically decided by two things, one the precision and the other accuracy. 

By precision of data is meant the reproducibility of the data, and it is basically 

dependent on random errors. It is these random errors which affect the calculation 

of the barrier distribution as three neighbouring points are involved in getting one 

value of the second derivative. The accuracy of the data depends on systematic 

errors and does not affect the calculation of barrier distribution. Hence one needs 

to minimise all kinds of random errors to be able to extract a meaningful barrier 

distribution. 

4.2 Barrier Distribution from Scattering Data 

The experimental barrier distribution, Df (E) is a direct consequence of the coupling 

of the entrance channel to the internal degrees of freedom of the colliding nuclei. 

The flux transmitted through the barriers amounts to fusion while the reflected 

flux goes into quasi-elastic reactions like elastic, inelastic scattering and transfer 
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reactions. Since the total flux is conserved, the coupling interactions that influence 

fusion should also have effect on the other channels. In fact, the coupled channels 

formalism describes heavy ion reactions in a unified manner. It is therefore expected 

that the distribution of potential barriers may be evident in the excitation functions 

measured for other reaction channels also [3]. The coupled channels does suggest 

that some information about the distribution of barriers of a reaction might be 

contained in the backward angle excitation functions for the quasi-elastic reactions. 

Classically for the case of a single potential barrier Bk and a head on collision, i. e 

the scattering angle e = 1800
, there is a direct relationship between the differential 

fusion cross section dOjus (E) and the quasi-elastic scattering differential cross section 

dClqel(E) based on the simple conservation of flux. The conservation of flux can be 

represented for fl. = 0 partial wave as 

T(E) + R(E) 1 ( 4.10) 

where T(E) and R(E) are the transmission and reflection coefficient respectively. As 

we saw in the previous section 

1 d 
T(E) = 7f R1 dE [EClfus(E)] (4.11) 

while the reflection coefficient is equal to the ratio of the differential cross section 

for the quasi elastic and Rutherford scattering 

( 4.12) 

The differential ofT(E) with respect to energy gives the barrier distribution Df (E, B b ) 

z.e 
dT _ 1 d2 _ f 
dE - 7fR1dE2[Eofus (E)]- D (E,Bb) ( 4.13) 

Combining all the above equations it follows 

Df(E B ) = dT = _ dR = _~ [dClqel (E e = 1800
)] 

,b dE dE dE dCl R ' 
( 4.14) 
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Thus classically for a single barrier the barrier distribution D(E, B b) can be 

obtained by differentiating daqet/daR(E) at 180° with respect to energy. Quantum 

mechanically also one can get 

Dqel(E) = - d~ [~~l (E, () = 1800
)]- Cqel(E, Bb) ( 4.15) 

where Cqel(E, Bb) is also a narrowly peaked function at the position of the barrier. 

Hence it defines an alternative representation of the barrier distribution, which is 

valid for a single barrier as also for the case of several barriers. The above concepts 

have been tested by exact coupled channels calculations. The calculated represen

tation Df (E) and Dqel (E) of the barrier distribution are found to be very similar. 

4.2.1 Dqel(E) from Experimental Data 

As said before one needs to measure quasi-elastic scattering excitation function at 

180° to be able to extract the barrier distribution. Experimentally, it is difficult 

to measure scattering excitation functions at a laboratory angle ()lab = 180°, hence 

experiments are carried out at angles as close to 180° as possible. In order to 

compare the shape of the barrier distribution obtained from these measurements 

with that for 180° scattering the energy scale for the former has to be reduced by 

the centrifugal energy Ecent . Assuming Rutherford orbits, the centrifugal energy is 

given by 
cosec(Bcm/2) - 1 

Ecent = Ecm ( ) cosec ()cm/2 + 1 
(4.16) 

where ()cm is the detection angle in the centre of mass system. It has been shown 

that the shape of Dqel(E) changes only slightly for angles close to 180°, however 

oscillatory behaviour of Dqel (E) at below barrier energies is seen for some systems 

[4] even at laboratory angles very close to 180°. These oscillations are associated 

with diffraction effects which can be avoided at extreme back angles. 

In this thesis we have reported on the measurement of 180° quasi-elastic scattering 

excitation function. 
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The barrier distribution Dqel(E) is extracted from the experimental data using 

the point difference formula 

Dqel(E) ~ _ daqet!daR(E + O.5L\E) - daqet!daR(E - O.5L\E) 
L\E ( 4.17) 

where L\E is the step size used. In order to compare Dqel(E) with Df(E), the 

latter has to be divided by the asymptotic classical fusion cross section 7r R~. The 

experimental data show that the two distributions are very similar. The important 

difference however lies in the way in which the errors in cross section are propagated 

to the barrier distribution. There are large uncertainties for Df (E) at higher ener

gies. In contrast, it follows from the point difference formula that for Dqel(E), the 

uncertainties are given by 

L\Dqel ~ fJV2 (daqel (E)) 
L\E daR 

(4.18) 

which decrease with energy as the quasi-elastic cross section falls rapidly. 

Thus the alternative representation of the barrier distribution as given by Dqel(E) 

is better defined at higher energies. Measurements performed by Timmers et at., [4] 
show that though the Dqel(E) shows the general features of Df(E), its sensitivity is 

reduced at higher energies ( 16 0 + 144Sm system). More recently Rowley et at., [5] 
showed that the effects of strong coupling are present in the barrier distribution from 

elastic scattering but are smoothened out since different eigen barriers have phase 

differences. Also the effects are smoothened by weak coupling, which appear in first 

order in the elastic scattering cross section, but only in the second order in fusion 

cross sections. Hence it would be important to treat the phase problem properly in 

order to obtain information on barrier distribution from elastic scattering data. 

4.3 Review of Barrier Distribution Measurements 

In the following sections, a review of the important barrier distribution measure

ments which highlight the advantage gained in displaying the data in this form is 

given. 
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4.3.1 Reactions Involving Rotational Nuclei 

Since the existence of a distribution of barriers is best justified in the case of ro

tational nuclei, the first measurements were performed on rotational nuclei. This 

served basically as a test of the concept. The first measurements were performed 

at ANU for the systems 160 + 154Sm, 186W [6J. Here the beam 160 was inert and 

the targets are known to have static deformation. The most important result of 

this first measurement was the sensitivity of the barrier distribution not only to the 

quadrupole deformation but also to the hexadecapole deformation. The dramatic 

difference in the shapes of the experimental distributions for the two systems was 

mainly due to the differences in the sign of the (34. The results also showed that, for 

statically deformed nuclei, the function d2 (Ea Jus (E)) / dE2 does indeed return a sen

sible representation of the barrier distribution which is expected from the classical 

picture. 

Other measurements like 40Ca + 1920s,194Pt [7J performed at the University of 

Washington also explored the effects of the nuclear shapes on the barrier structure 

and excitation function. 

4.3.2 Reactions Involving Vibrational Nuclei 

Since the existence of the barrier distribution is not obvious for vibrational nuclei 

it was essential to perform measurements involving vibrational nuclei in order to 

establish the general formalism. 

The 16 0 + 144Sm Reaction 

The experimental barrier distribution for the 160 +144Sm system [8J exhibited a 

distinct two peaked structure, with the main strength around 60 MeV and a peak 

with smaller strength near 65 MeV. An excellent representation of the excitation 

function and the double peaked structure of the barrier distribution was obtained 

by including couplings to the 2+ and the 3- states of 144Sm, the latter having the 
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dominant effect. This established the barrier distribution picture even in the case 

where the excitation energies are not zero as in the eigen channel approach. 

The 58Ni + 60Ni Reaction 

The experimental study of 58Ni + 6°Ni system [9] revealed for the first time the 

existence of a barrier distribution with several well defined peaks that could only 

be explained by multi-phonon coupling. Full calculations including coupling upto 

four phonon states gave a very good account of the excitation function and also 

reproduced the three peaked barrier distribution. 

The 16 0 + 208Pb Reaction 

The re-measurement ofthe fission excitation function for 160 + 208Pb was performed 

at the Australian National University using 160 beams from the 14UD Pellet ron 

accelerator [10]. The purpose of this work was to find the cause of the previous 

disagreement between theory and data by comparing the new barrier distribution 

with exact coupled channels calculations and to identify the dominant coupling in 

the fusion of 160 + 208Pb. Coupling to the single- and 2-phonon states of 208Pb, 

correctly taking into account the excitation energy and phonon character of these 

states, particle transfers and the effects of varying the diffuseness of the nuclear 

potential were all explored. However no satisfactory simultaneous description of 

the experimental barrier distribution and the fusion excitation function could be 

obtained. This has put a question mark on our understanding of the fusion process. 

4.3.3 Reactions Involving Transfer Coupling 

The importance of transfer coupling in enhancing fusion is well established however 

quantitative verification has not been possible partly because of the sparse transfer 

data. Moreover transfer coupling in the weak coupling limit are difficult to isolate 

from other strong coupling cases like coupling to inelastic channels in the excitation 

function. The barrier distribution can help in unfolding this degeneracy. Most of 



Fusion Barrier Distribution 74 

the experiments performed to address this problem studied systems with positive 

Q-value neutron transfer channels because they would give rise to a barrier lower in 

energy than the inelastic coupling. 

The comparison of the measured barrier distribution for the 170 + 144Sm reac

tion [8] with that for 160 +144Sm showed unambiguously that for the 170 projectile, 

coupling to the In-stripping channels with a positive Q-value produced a barrier 

lower than in the case of the 160 system. Many other reactions have been stud

ied, like 40Ca + 46,48,50Ti [11], 32,36S + l1oPd, 40Ca + 116,124Sn [12, 13] and barrier 

distributions have been extracted to investigate the effects of two or more neutron 

transfer channels with positive Q-values. The 40Ca + 90,96Zr [14] system was studied 

to see the effect of sequential transfer of several neutrons. The experimental barrier 

distribution for the 40Ca + 96Zr case was fiat and rather structure-less extending to 

low energies. This was in sharp contrast to the distribution for 90Zr which showed 

well defined peaks. Calculations indicate that sequential neutron transfer, rather 

than single step neutron transfer in the case of 40Ca + 96Zr is required to explain 

the data. Thus the effect of single neutron transfer channels is seen as change of 

slope of the excitation function at the lowest energies whereas for multi-neutron 

sequential transfer there is significant effect on both the excitation function and 

barrier distribution at energies below and close to the barrier. 

4.3.4 Barrier Distribution from Quasi-Elastic Scattering 

Although for many systems quasi-elastic angular distributions have been measured, 

excitation functions have only rarely been measured with high precision. In or

der to test the technique for extracting barrier distribution from 1800 excitation 

function, precise measurements were performed for the systems 160 + 92Zr , 144Sm, 

154Sm and 186W [4] at the Australian National University. These reactions were 

selected because the experimental distributions Df (E) are known so that a compar

ison of Df (E) and Dqel(E) is possible. The detection angles for the 160 + 92Zr were 
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e1ab = 143° and 155°, while for the 160 + 144Sm they were e1ab = 143°, 155° and 

170°. For the systems 160 + 154Sm, 186W, the detection angle was e1ab = 170°. For 

all four systems the quasi-elastic excitation functions daqel/daR(E) show a smooth 

monotonic decrease with energy which is different for each system. The barrier dis

tribution Dqel(E) was extracted using an energy step of 2 MeV. The extracted dis

tributions reflect the barrier distribution of the reaction. They were compared with 

Df (E) which were divided by the classical cross section 7r R~ to facilitate compari

sion. For the target nuclei 154Sm, 186W and 92Zr the two distributions are consistent 

with each other. However, Dqel(E) is different from Df(E) for the 144Sm target. 

The high energy peak in Df (E) is absent in Dqel (E). This suggests that there is a 

certain loss of sensitivity at high energy in some case as pointed out earlier. 

More measurements have been performed like 160, 32s + 208Pb, and 40Ca + 90,96 Zr 

[15J however none of these have been performed at a laboratory scattering angle of 

180°. In most of the measurements a general consistency has been seen in the barrier 

distribution extracted from fusion excitation function and that obtained from back 

angle quasi-elastic scattering excitation function suggesting that this can be used to 

extract complimentary information. 

4.4 Review of Coupled Channels Calculations 

The very first coupled channels calculations for heavy-ion fusion were performed 

under several approximation so as to simplify the calculations. These calculations 

used the adiabatic approximation, neglecting the finite excitation energies of the 

surface vibrations. However, excitation energies of the order of 1 Me V as typically 

encountered in vibrational nuclei are too large to be ignored. Also these calculations 

assumed a linear coupling to the quadrupole or octupole surface vibrations and 

quadrupole deformations. This is clearly insufficient for coupling to a rotational 

band. In the case of vibrational coupling, only single phonon states were included in 

the calculations. Within these limitations, the simplified calculations were successful 
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in explaining the sub-barrier enhancement in many cases. However, the power of 

new precise data and its visualisation through the experimental barrier distribution 

technique exposed the limitations of these calculations. The quality of the existing 

data now makes it possible to quantitatively explore the effect of the approximations 

introduced in the theoretical calculations. In the following sections we will see the 

effect of non-linear couplings, the effect of the anharmonicities in the vibrational 

spectra and the effect of coupling to high lying states on the fusion process and the 

refinement in the calculations which can take care of them. 

4.4.1 Effect of Non-Linear Couplings 

An important component in the theoretical description of the sub-barrier fusion data 

is the effect of non-linear couplings. Though the linear coupling approximation re

produces the experimental data for very asymmetric systems, it does not explain the 

data for heavier and nearly symmetric systems [16, 17]. The effect of higher order 

couplings on the barrier distributions in the limit of zero excitation energy has been 

discussed by Balantekin et al. [18] in the framework of the interacting boson model 

(IBM). Esbensen and Landowne [19] showed the importance of second order cou

pling terms. The quadratic coupling approximation was shown to describe well the 

fusion cross sections and angular momentum distributions for the 58,64Ni + 92,lOOMo 

reactions [20]. Later Stefanini [9] performed coupled channels calculations including 

coupling to all orders and finite excitation energy of nuclear vibration for the system 

58Ni + 6°Ni. 

Hagino et al. [21] showed the importance of high order coupling in the analysis 

of symmetric as well as very asymmetric systems also. They found that for the 

64Ni + 92,96 Zr reactions, terms beyond those in the quadratic coupling approxima

tion result in further enhancement of the fusion cross section at sub-barrier energies. 

The inclusion of the coupling to all orders is crucial to reproduce the experimental 

fusion cross sections and average angular momenta. For the asymmetric systems 
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160 + 112Cd, 144Sm also, the higher order coupling resulted in a non negligible en

hancement of the fusion cross section and a significant modification of the barrier 

distribution and the average angular momenta. 

4.4.2 Effect of Anharmonicities of Nuclear Vibrations 

The analysis of 58Ni + 6°Ni [9] and 36S + 110Pd [12] data showed that while one

phonon space clearly fails in describing the barrier distribution for these systems, 

the agreement with data improved successively as one included more phonons in 

the calculations. These calculations were performed in the harmonic oscillator ap

proximation. However for the case of 160 + 144Sm [6] it was found that inclusion 

of the double phonon excitations of 144Sm in the calculations in the harmonic limit 

destroys the agreement between the experimental fusion barrier distribution and 

calculations. Hagino et al. [22] demonstrated that the anharmonic properties of 

the quadrupole and octupole vibrational excitations in 144Sm strongly influence the 

shape of the barrier distribution and their inclusion leads to good agreement be

tween the data and theoretical predictions. In fact, these studies show that the 

fusion barrier distribution does not depend so much on the excitation energies of 

the multi-phonon states once the single phonon quadrupole and octupole states are 

fixed. The main effect comes from the re-orientation effects as well as the deviation 

of the transition probability from the harmonic limit. 

4.4.3 Effect of High Lying States 

It was found that for the system, 160 + 144Sm, the good theoretical representation of 

the experimental fusion barrier distribution obtained by neglecting the couplings to 

projectile states was destroyed when the 3- state of 160 is included. In contrast to 

this, the 40Ca + 1920S, 194pt reactions [7] which also involved a closed shell projectile, 

showed a characteristic structure with a high energy peak which could be explained 

by including coupling to the octupole state of 40Ca. Hagino et al. [23] pointed 
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out that the observed discrepancy is due to the inadequacy of the linear coupling 

approximation used in the calculation. Their calculations including coupling to 

160 states to all orders reproduces the shape of the experimental distribution apart 

from a energy shift. The calculations by Hagino et al. for the 40Ca + 1920S, 194pt 

reactions which treat the coupling to the 3- states of 40Ca to all orders produce a 

higher energy peak in quantitative agreement with the experimental observation. 

The calculations with full order coupling thus show that while the dominant 

effect of the excitation of the 160 octupole state at 6.1 MeV is simply to renormalise 

the static potential, the coupling to the 3- state in 40Ca at 3. 7 MeV introduces 

well defined peaks in the barrier distribution for the systems 40Ca + 1920S, 194pt. 

However for reactions of 40Ca with light targets where coupling effects are weak, 

coupling to the states of 40Ca just renormalises the potential. These calculations 

therefore suggest a natural limit to the energy of states which need to be considered 

explicitly in the coupled channel calculations. 
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