REFERENCES

1. ACI 237R-07 2007, ‘Self-Consolidating Concrete’, American Concrete Institute, Detroit.

2. ACI 301 2010, ‘Specification for Structural Concrete’, American Concrete Institute, Detroit.


5. ACI Committee 116R-90 1992, ‘Cement and Concrete Terminology, Manual of Concrete Practice’, Part 1, American Concrete Institute, Detroit. 68 pp.

6. ACI Committee 201, 1992, ‘Guide to Durable Concrete’, American Concrete Institute, Report of ACI Committee 201, ACI 201.2R-92.


27. ASTM, C109/C109M-13e1 2013, ‘Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or (50-mm) cube specimens)’, ASTM International, West Conshohocken, PA, USA.


37. ASTM, C78 - 10e1 2010, ‘Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)’, ASTM International, West Conshohocken, PA, USA.


91. Deja J and Malolepszy J. 1989, ‘Resistance of alkali-activated slag mortars to chloride solution’, Proceedings of the Third International Conference on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, American Concrete Institute, pp. 1547-1561


93. Domone, PLJ 2006a, ‘Motor tests for material selection and mix design of SCC’, Concrete International.


First International RILEM Symposium on self-compacting concrete, Stockholm, Sweden, vol 1, pp. 25-34


International symposium on Self-Compacting Concrete, Stockholm, pp. 345-359.


196. Okamura, H & Ozawa, K 1994, ‘Self-compactable high strength in concrete in Japan SP-169’, American Concrete Institute, Detroit, pp. 31-44.


the 2nd International RILEM Symposium on Self-Compacting Concrete, editors, pp. 57-62.


