TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
ABSTRACT v
LIST OF TABLES xix
LIST OF FIGURES xxiii
LIST OF ABBREVIATIONS xxvii

1 INTRODUCTION 1
 1.1 GENERAL 1
 1.1.1 Mechanical Recycling 4
 1.1.2 Incineration 4
 1.1.3 Thermal Cracking or Pyrolysis 5
 1.1.4 Thermochemical Recycling 5
 1.2 IMPORTANCE OF WATER 6
 1.2.1 Water Pollutants 7
 1.2.2 Persistent Organic Pollutants: A Long-Term Global Problem 8
 1.2.3 Textile Wastewater Treatment 9

2 LITERATURE REVIEW 12
 2.1 LOW COST ADSORBENTS FROM PLASTIC WASTE 15
 2.1.1 Micro Organisms used as Adsorbents 17
 2.1.2 Agricultural Waste used in the Decolourisation of Synthetic Dyes 17
 2.1.3 Non Conventional Low Cost Activated Carbon Adsorbents from Industrial Wastes 18
2.2 SOURCES OF DYE WASTEWATER 19
2.3 CHARACTERISTICS OF DYE HOUSE EFFLUENT 21
2.4 DYESTUFFS AND ORGANIC POLLUTANTS 23
 2.4.1 Dyes 23
 2.4.2 Classification of Dyes 24
 2.4.2.1 Dyes 24
 2.4.2.2 Acid dyes 24
 2.4.2.3 Basic dyes 25
 2.4.2.3.1 Direct dyes 25
 2.4.2.3.2 Mordant dyes 25
 2.4.2.3.3 Vat dyes 25
 2.4.2.4 Reactive dyes 26
 2.4.2.4.1 Disperse dyes 26
 2.5 TOXICITY OF DYES AND ORGANIC POLLUTANTS 26
 2.5.1 Problem Statement 27
 2.5.2 Wastewater Pollution Remediation 28
 2.5.3 Technologies for Wastewater Treatment 29
 2.5.4 Primary Water Treatment Technologies 29
 2.5.4.1 Preliminary treatment 29
 2.5.4.2 Primary treatment 30
 2.5.5 Secondary Treatment 31
 2.5.6 Tertiary Treatment 32
 2.5.6.1 Oxidation techniques 32
 2.5.6.2 Electrocoagulation process and foam fractionation 33
 2.5.6.3 Membrane technologies 33
 2.5.6.4 Electrodialysis 34
 2.5.6.5 Electrochemical processes 34
 2.5.6.6 Ion exchange method 34
2.5.6.7 Biological degradation 35
2.5.6.8 Photocatalytic treatment 35
2.5.6.9 Adsorption 35
2.5.6.10 Adsorption and surface complexation 37

2.6 ACTIVATED CARBON 40
2.6.1 Removal of Colours from Textile Wastewater - Role of Activated Carbon 41
2.6.2 Objective of Study 42
2.6.3 Rationale and Significance 42

3 MATERIALS AND METHODS 44
3.1 DYE SOLUTION CHARACTERISTICS 44
3.2 ADSORBENTS 46
3.2.1 Collection of Adsorbents 46
3.2.1.1 Used polypropylene waste 46
3.2.1.2 Used polyethyleneterephthalate waste 46
3.2.1.3 Used polyvinylchloride waste 46
3.2.2 Identification of the Plastic Waste 47
3.2.3 Preparation of Activated Carbon from Waste Plastics 48
3.2.4 Catalyst 48
3.2.4.1 HZSM-5 49
3.2.4.2 HUSY 49
3.2.4.3 HMOR 49
3.2.5 Pyrolysis 49
3.2.5.1 Pyrolysis experimental setup 50
3.2.5.2 Thermal pyrolysis 51
3.2.6 Catalytic Pyrolysis 52
3.2.6.1 Catalytic pyrolysis with HZSM-5 53
3.2.6.2 Catalytic pyrolysis with HUSY 54
3.2.6.3 Catalytic pyrolysis with HMOR 55
3.2.6.4 Choice of catalyst 56
3.2.7 Identification of Polymer Mixture Ratios 57
 3.2.7.1 Optimization of the catalyst and waste plastic material ratio 58
 3.2.7.2 Optimization of the temperature, catalyst and waste plastic material ratio 59
3.2.8 Carbonization Procedures 60
 3.2.8.1 KOH activation process 60
 3.2.8.1.1 ZnCl₂ activation process 61
 3.2.8.1.2 Sulphuric acid process 61
 3.2.8.1.3 CO₂ activation process 62
3.3 CHARACTERIZATION OF THE ADSORBENT 62
 3.3.1 Determination of Zero Point Charge (pH_{zpc}) 62
 3.3.2 Surface Area of Activated Carbon 63
 3.3.3 Pore Structure 63
 3.3.4 XRD and SEM Analysis 64
 3.3.5 FTIR and Elemental Analysis 64
 3.3.6 Thermogravimetric Analysis 65
 3.3.7 pH and Conductivity 65
 3.3.8 Moisture Content 65
 3.3.9 Ash Content 66
 3.3.10 Apparent Density 66
 3.3.11 Specific Gravity 66
 3.3.12 Decolourising Power 67
 3.3.13 Ion-Exchange Capacity 68
 3.3.14 Matter Soluble in Water 68
 3.3.15 Matter Soluble in Acid 69
3.3.16 Phenol Adsorption Capacity 70
3.3.17 Determination of Oxygen Containing Functional Groups 70

3.4 OPTIMUM CONDITIONS FOR THE PRODUCTION OF ACTIVATED CARBON 71
3.4.1 Adsorption of Iodine 71
3.4.2 Adsorption of Methylene Blue 73

3.5 DETERMINATION OF DYE CONCENTRATION 73

3.6 MEASUREMENT OF PH 74

3.7 ESTIMATION OF PARTICLE SIZE OF ADSORBENTS 74

3.8 ISOTHERM STUDIES 75

3.9 KINETIC STUDIES 75

3.10 ERROR ANALYSIS 76

4 RESULTS AND DISCUSSIONS 77

4.1 CHARACTERISTICS OF ADSORBENT 77
4.1.1 Preparation of Activated Carbon from Plastic Waste Materials 82
4.1.2 Optimum Conditions for the Preparation of Activated Carbon 83
4.1.2.1 Yield of the activated carbon 83
4.1.2.2 Effect of activation time on yield 83
4.1.2.3 Effect of activation temperature on yield 84
4.1.3 Optimisation Using Iodine Number Measurements 84
4.1.3.1 Effect of activation time on iodine number 85
4.1.3.2 Effect of activation temperature on iodine number 85
4.1.4 Optimisation Studies Using Methylene Blue
Number 85

4.1.4.1 Effect of activation time on methylene blue value 86
4.1.4.2 Effect of activation temperature on methylene blue value 86

4.1.5 Elemental Analysis of Char and Activated Carbon 90

4.1.5.1 Mechanism of conversion of plastic waste into activated carbon 91

4.1.6 Thermal Analysis of Plastic Waste Activated Carbon 92

4.1.7 Pore Size Distribution of Activated Carbon 95

4.1.8 BET Characteristics of Plastic Waste Activated Carbon 95

4.1.9 The Surface Morphology of PWAC 98

4.1.10 XRD Studies and Structure of PWAC 100

4.1.11 FTIR Spectral Analysis of PWAC 103

4.2 BATCH ADSORPTION EQUILIBRIUM STUDIES 106

4.2.1 Determination of Optimum pH 107

4.3 EFFECT OF VARIABLES ON ADSORPTION 108

4.3.1 Effect of Initial Concentration of the Adsorbate on Adsorption Equilibrium (Isotherm studies) 109

4.4 EFFECT OF AGITATION TIME ON ADSORPTION 111

4.5 EFFECT OF TEMPERATURE ON ADSORPTION 113

4.6 EFFECT OF pH ON ADSORPTION 119

4.7 EFFECT OF DOSAGE ON ADSORPTION 123

4.8 ADSORPTION ISOTHERMS 127

4.8.1 Langmuir Adsorption Isotherm 128
4.8.2 Freundlich Isotherm
4.8.3 Temkin Isotherm
4.8.4 Jovanovic Isotherm
4.8.5 Halsey Isotherm
4.8.6 Dubinin–Radushkevich Isotherm
4.8.7 Selection of Isotherm model

4.9 KINETICS OF ADSORPTION
4.9.1 Adsorption Kinetic Models
4.9.2 Effect of Temperature on Kinetic Rate Constant
4.9.3 Pseudo First Order Kinetic Model
4.9.4 Pseudo Second Order Kinetic Model
4.9.5 Elovich model
4.9.6 Selection of the Kinetic Model

4.10 MECHANISM OF ADSORPTION

4.11 ISOSTERIC HEAT OF ADSORPTION

4.12 THERMODYNAMIC PARAMETERS

4.13 ERROR ANALYSIS
4.13.1 The Sum of the Squares of Errors (SSE)
4.13.2 The Sum of the Absolute Errors (EABS)
4.13.3 Hybrid Fractional Error Function (HYBRID)
4.13.4 Marquart’s Percentage Standard Deviation (MPSD)
4.13.7 Non-Linear Chi Square Test (χ^2)
4.13.8 F- Test
4.13.9 Optimization of Error Functions
4.13.10 Nonlinear Approach for Analysis of Kinetic Model

4.14 DESIGN OF BATCH SORPTION FROM ISOTHERM DATA
4.15 DESORPTION STUDIES 205
4.16 STUDIES ON INDUSTRIAL WASTE WATER 207
 4.16.1 Effluent Characterization 207
 4.16.2 Performance Evaluation of Colour Removal onto the Adsorbent PWAC 208
 4.16.3 Effect of Contact Time 208
 4.16.4 Effect of Adsorbent Dosage 209
 4.16.5 Effect of pH 210
 4.16.6 Effect of Temperature 212
 4.16.7 Verification of the Experiment 212
4.17 ADSORPTION OF MECHANISM 214

5 SUMMARY AND CONCLUSIONS 222
 5.1 SUMMARY 222
 5.2 CONCLUSIONS 222

REFERENCES 226

LIST OF PUBLICATIONS 267
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Various adsorbents used for removal of dyes</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>Classification of the dyes and their structures</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Thermal pyrolysis of waste plastics</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Catalytic pyrolysis of the plastic waste with HZSM-5</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Catalytic pyrolysis of the plastic waste with HUSY</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Catalytic pyrolysis of the plastic waste with HMOR</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Identification of ratio of the plastic waste into char conversion</td>
<td>57</td>
</tr>
<tr>
<td>3.7</td>
<td>Identification of ratio of the plastic waste and Catalyst into char conversion</td>
<td>58</td>
</tr>
<tr>
<td>3.8</td>
<td>Optimization of the temperature, catalyst and waste plastic material ratio</td>
<td>59</td>
</tr>
<tr>
<td>4.1</td>
<td>Physicochemical characteristics of the adsorbent</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Adsorption capacity of various adsorbents on Methylene blue</td>
<td>88</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison adsorption capacities of various adsorbents for Methylene blue</td>
<td>89</td>
</tr>
<tr>
<td>4.4</td>
<td>Elemental analysis of char and activated carbon</td>
<td>90</td>
</tr>
</tbody>
</table>
4.5 Textural characteristics of PWAC determined from N₂ adsorption at 77 K

4.6 Effect of initial dye concentration and temperature on adsorption of dyes (at constant pH 6.5 and particle size 75 – 180 microns)

4.7 Effect of initial dye concentration and system pH on adsorption of dyes (at constant particle size 75 – 180 microns and temperature 30 °C)

4.8 Effect of initial dye concentration and adsorbent dosage on adsorption of dyes (at constant pH 6.5 and temperature 30 °C)

4.9 Linear transformations of the Langmuir isotherm

4.10 Langmuir isotherm equilibrium parameter R_L for dye adsorption on PWAC at 30 °C, pH 6.5 and adsorbent particle size 75-180 microns

4.11 Results of isotherm plots for the adsorption of Acid Red 114 onto PWAC

4.12 Results of isotherm plots for the adsorption of Basic Green 4 onto PWAC

4.13 Results of isotherm plots for the adsorption of Direct brown 2 onto PWAC

4.14 Results of isotherm plots for the adsorption of Reactive Blue 2 onto PWAC

4.15 The adsorption kinetic model rate constants at different temperatures

4.16 D_p and D_f values for the chosen adsorbent - adsorbate system
4.17 Effective diffusion coefficient (D_i) preexponential constants (D_o) activation energy ($E_{a(d)}$) and entropy of activation ($\Delta S_{(d)}$) for diffusion of dyes on PWAC 179

4.18 Activation energy and thermodynamic parameters for the adsorption of selected dyes onto PWAC 185

4.19 Isotherm Error parameters for the adsorption of acid dye onto plastic waste activated carbon 194

4.20 Isotherm error parameters for the adsorption of basic dye onto plastic waste activated carbon 195

4.21 Isotherm Error parameters for the adsorption of direct dye onto plastic waste activated carbon 196

4.22 Isotherm Error parameters for the adsorption of reactive dye onto plastic waste activated carbon 197

4.23 Kinetic Error parameters for the adsorption of acid dye onto plastic waste activated carbon 199

4.24 Kinetic Error parameters for the adsorption of basic dye onto plastic waste activated carbon 200

4.25 Kinetic Error parameters for the adsorption of direct dye onto plastic waste activated carbon 201

4.26 Kinetic Error parameters for the adsorption of reactive dye onto plastic waste activated carbon 202

4.27 Data for single stage batch adsorber design from Langmuir isotherm data 204
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.28</td>
<td>Effect of pH and desorbing agents on % desorption of dyestuffs from adsorbents</td>
<td>207</td>
</tr>
<tr>
<td>4.29</td>
<td>Characteristics of industrial effluents</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>FIGURE NO.</td>
<td>TITLE</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic representation of adsorption process</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Identification selected plastic waste materials</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic diagram for the pyrolysis unit</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Diagram of ACs Conversion</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>a) Effect of activation time on Yield b) Effect of activation time on iodine number c) Effect of activation time on methylene blue value d) Effect of activation temperature on Yield e) Effect of activation temperature on methylene blue value f) Effect of activation temperature on iodine number</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Elemental analysis of a) plastic waste char and b) PWAC</td>
<td>91</td>
</tr>
<tr>
<td>4.3</td>
<td>Thermal analysis of plastic waste activated carbon</td>
<td>94</td>
</tr>
<tr>
<td>4.4</td>
<td>Adsorption-desorption isotherm of PWAC</td>
<td>97</td>
</tr>
<tr>
<td>4.5</td>
<td>SEM micrographs of char (a-d)</td>
<td>99</td>
</tr>
<tr>
<td>4.6</td>
<td>SEM micrographs of plastic waste activated carbon (a-d)</td>
<td>100</td>
</tr>
<tr>
<td>4.7</td>
<td>XRD pattern of the plastic waste activated carbon</td>
<td>102</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>FT-IR spectra of Plastic waste char</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>FT-IR spectra of activated Plastic waste carbon</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Determination of pH$_{ZPC}$ of PWAC</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of initial concentration on a) Acid b) Basic c) Direct d) Reactive dyes by PWAC at different temperatures</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of agitation time on adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC at different temperatures</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of pH on the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Effect of dosage on the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Langmuir adsorption isotherm plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC at different temperatures</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Freundlich adsorption isotherm plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC at different temperatures</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Temkin adsorption isotherm plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC at different temperatures</td>
<td></td>
</tr>
</tbody>
</table>
4.18 Jovanovic adsorption isotherm plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC at different temperatures

4.19 Halsey adsorption isotherm plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC at different temperatures

4.20 D-R adsorption isotherm plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC at different temperatures

4.21 Pseudo first order plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC

4.22 Pseudo second order plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC

4.23 Elovich plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC

4.24 Intraparticle diffusion plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC

4.25 Boyd diffusion plot for the adsorption of a) Acid b) Basic c) Direct d) Reactive dyes by PWAC
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.26</td>
<td>Van’t Hoff plot for the adsorption of dyes onto PWAC</td>
</tr>
<tr>
<td>4.27</td>
<td>Single stage batch adsorber design</td>
</tr>
<tr>
<td>4.28</td>
<td>Effect of contact time on colour removal</td>
</tr>
<tr>
<td>4.29</td>
<td>Effect of dosage on colour removal</td>
</tr>
<tr>
<td>4.30</td>
<td>Effect of pH on colour removal</td>
</tr>
<tr>
<td>4.31</td>
<td>Mechanism of adsorption</td>
</tr>
<tr>
<td>4.32</td>
<td>Adsorption internal diffusion mechanism</td>
</tr>
</tbody>
</table>