CHAPTER ONE

Introduction

Figure 01 Hierarchical pathways in hematopoietic development 4
Figure 02 Assays used to detect hematopoietic stem cells 6
Figure 03 The Human Colony Forming Cell (CFC) Assay using Methylcellulose-based Media 9
Figure 04 Molecular factors involved in the differentiation of Common myeloid progenitors 10
Figure 05 Hierarchical pathways in chronic myeloid leukemia development 14
Figure 06 Pathobiology of Bcr-Abl tyrosine kinase 16
Figure 07. Development of Tyrosine kinase inhibitors 18
Figure 08. Biology of relapse in CML. 20
Figure 09. Biology of resistance towards TKIs in CML. 21
Figure 10 Molecular factors contributing to resistance towards TKIs in CML. 23
Figure 11. Biogenesis of miRNAs. 28
Figure 12 Common available approaches toward miRNA research 31
Figure 13. Targeted genome engineering 34
Figure 14. CRISPR/Cas9 mediated genome targeting 37

CHAPTER TWO

Materials and methods

Pipeline for miRNA sequencing data analysis 59

CHAPTER THREE

Targeting Cancerous Cells Effect of Marine Extracts and TK Inhibitors

Figure 3.1 Fluorescent micrographs of HL-60 cells treated with ethyl acetate extract of Jaspis sp. (JDE). 65
Figure 3.2 Effect of VLC (13-17) on cell morphology. 65
Figure 3.3 Changes in the morphology of human cervical
adenocarcinoma cell line (HeLa) cells treated with ethyl acetate extract (JDE) and hexane extract (JDH) of *Jaspis* sp.

Figure 3.4 Effect of Imatinib on Bcr-Abl tyrosine kinase.

Figure 3.5 Effect of Imatinib on cell cycle profile of K562 cells.

Figure 3.6 TKI resistance is associated with a shift in ME% of K562 cells.

CHAPTER FOUR

High throughput approaches to understand the TKI resistance in CML

Figure 4.1 Analysis of the sequenced exome.

Figure 4.2 High Expression of MiRNA182-5p is associated with TK inhibitor resistance in CML Cells.

Figure 4.3 Percentage cell proliferation of LNA anti-miRNA182-5p transfected K562 cells with TK inhibitor

CHAPTER FIVE

Functional Characterization of MiRNA-182 Signalling Components

Figure 5.1 Modulation in the expression of MiRNA182-5p results in a shift of ME% in K562 cells.

Figure 5.2 Effect of miR-182 modulation on differentiation potential of K562 cells.

Figure 5.3 Hes1 serves as a putative target of miRNA182-5p in regulating ME%

Figure 5.4 MiRNA182-5p negatively correlates with Notch signalling target genes in the context of TKI resistance

Figure 5.5 The expression of Hes1 in primary CML cells

Figure 5.6 Expression pattern of erythroid and myeloid lineage factors in CML array

Figure 5.7 Analysis of signalling components upstream to miRNA182
CHAPTER SIX

CRISPR Knockout of MIR-182 and Properties of Δ182 cells

Figure 6.1 Experimental layout of MIR182 knockout in K562 cells 108
Figure 6.2 Generation of a CRISPR based knockout system to delete MIR182 locus 109
Table 6.1 Off-target of CRISPR guideRNAs targeting MIR-182 locus 110
Figure 6.3 The deletion of MIR182 locus in HEK293 cells. 111
Figure 6.4 CRISPR MIR-182 deletion methodology in K562 cells 112
Figure 6.5 Deletion of MIR182 locus in K562 cells 113
Figure 6.6 Expression of miRNA182-5p in wt, wt/Δ182 and Δ182-K562 cells 114
Figure 6.7 Differentiation potential of Δ182 cells. 115
Figure 6.8 MIR182 deletion dramatically shifts ME% in K562 cells. 116
Figure 6.9 Ectopic expression of miRNA182-5p increases erythroid phenotype in Δ182 cells. 117
Figure 6.10 Quantitation of the colony counts on day 21 with each condition 118

CHAPTER SEVEN

Summary and Discussion

Model Based on Hypothesis 124