TABLE OF CONTENTS

ABSTRACT iv

OBJECTIVES, SCOPE AND METHODOLOGY viii

PREFACE x

LIST OF TABLES (APPENDIX A) xvi

LIST OF FIGURES xviii

LIST OF SYMBOLS xxii

LIST OF PLATES xxiii

LIST OF APPENDICES xxvi

1.0 INTRODUCTION 1

1.1 : Aluminium and its alloys 3

1.2 : Classification of aluminium alloys 3

1.3 : Designation of aluminium alloys 4

1.3.1 : Designation of wrought alloys 4

1.3.2 : Designation of cast alloys 4

1.4 : Temper designation of basic aluminium alloys 4

1.4.1 : T-Temper codes 5

1.4.2 : H-Temper strain hardening codes 5

1.5 : Alloying elements 5

1.5.1 : Effect of some important alloying elements on properties aluminium alloy. 5

1.6 : Aluminium -Silicon-Magnesium Alloys 5

1.6.1 : Al-7.0Si-0.6Mg (A357.0) alloy 6

1.6.2 : Composition 6

1.6.3 : Mechanical properties 6

1.6.4 : Applications 6

1.7 : Modification 7

1.7.1 : Sodium modification 8

1.7.2 : Strontium modification 8

1.8 : Heat treatment 8
1.8.1 : Solution heat treatment 8
1.8.2 : Quenching 8
1.8.3 : Precipitation hardening or age hardening 9
1.9 : The effect of microstructure on properties of A357 alloy 11
1.9.1 : Intermetallic phases 11
1.9.2 : Dendrite arm spacing 11
1.10 : Machinability of Al-Si-Mg alloys 12
1.11 : Corrosive behavior of A357 13

2.0 LITERATURE SURVEY 14

3.0 : MATERIALS AND METHODOLOGY 39
3.1 : Materials 39
3.2 : Methodology 39
3.3 : Production of sand castings using coke fired furnace 40
3.3.1 : Pattern making 40
3.3.2 : Mould making 41
3.3.3 : Melting and pouring 42
3.3.4 : Sodium modification 44
3.3.5 : Strontium modification 45
3.4 : Production of permanent mould castings and modification 45
3.4.1 : Permanent mould 45
3.4.2 : Melting and pouring 46
3.4.3 : Sodium modification 48
3.4.4 : Strontium modification 48
3.5 : Heat treatment of Al-Si Alloys 48
3.5.1 : Solutionization and age hardening

3.6 : Machining of specimen as per ASTM standards for various tests.

3.7 : Tests conducted

3.7.1 : Microstructural analysis

3.7.2 : Hardness test

3.7.3 : Tension test

3.7.4 : Impact test

3.7.5 : Dry sliding wear test

3.7.6 : Machinability test

3.7.7 : Fog corrosion test

4.0 : RESULTS AND DISCUSSION

4.1 : Microstructural analysis

4.1.1 : Effect of age hardening time on silicon morphology and grain size of sand cast specimen

4.1.2 : Effect of age hardening time on silicon morphology and grain size of permanent mould specimen

4.1.3 : Effect of modification on Si morphology of sand cast specimen

4.1.4 : Effect of casting method on microstructure

4.1.5 : Effect of modification and casting method on dendritic cell (grain) size.

4.1.6 : Effect of age hardening time on dendritic cell (grain) size.

4.2 : Hardness test results

4.2.1 : Effect of modification on hardness of sand cast specimen
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2</td>
<td>Effect of modification on hardness of permanent mould cast specimen</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Effect of casting method on hardness of modified specimen</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Effect of age hardening time on hardness of sand cast specimen (as cast condition)</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Effect of age hardening time on hardness of permanent mould specimen</td>
</tr>
<tr>
<td>4.3</td>
<td>Tensile test results</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Effect of modification on tensile strength of sand cast specimen</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Effect of modification on tensile strength of permanent mould specimen</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Effect of casting method on UTS of modified specimen</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Effect of age hardening time on tensile strength of sand cast specimen</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Effect of age hardening time on tensile strength of permanent mould specimen</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Effect of age hardening time on UTS of sand cast and permanent mould cast specimen</td>
</tr>
<tr>
<td>4.4</td>
<td>Izod (impact) test results</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Effect of modification on impact Energy of sand cast specimen</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Effect of modification on impact Energy of permanent mould specimen</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Effect of age hardening time on impact energy of sand cast specimen</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Effect of age hardening time on impact energy of Permanent mould cast specimen</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Effect of aging time and modification on impact energy of A357 alloy</td>
</tr>
</tbody>
</table>
4.5 : Wear test results
 4.5.1 : Effect of speed on wear of modified specimen
 4.5.2 : Effect of speed on wear of solutionized and age hardened specimen
 4.5.3 : Effect of load on wear of modified specimen
 4.5.4 : Effect of load on wear of solutionized and age hardened specimen
 4.5.5 : Effect of modification on wear
 4.5.6 : Effect of age hardening time on Wear
 4.5.7 : Effect of casting method on wear

4.6 : Machinability results
 4.6.1 : Effect of feed, speed and depth of cut on machinability of as cast and modified A357 alloy:
 4.6.2 : Effect of solutionization age hardening on machinability

4.7 : Corrosion test results
 4.7.1 : Effect of age hardening time on corrosion rate
 4.7.2 : Effect of casting method and modification on corrosion rate
 4.7.3 : Effect of casting method and age hardening time on corrosion rate
 4.7.4 : Effect of time on corrosion rate

5.0 : SUMMARY and CONCLUSIONS

6.0 : SCOPE FOR FURTHER STUDY
 REFERENCES
 APPENDICES
 INDEX