CONTENTS

PART-I

CHAPTER-1

<table>
<thead>
<tr>
<th>SOLAR ENERGY AND PROPERTIES OF TRANSPARENT CONDUCTING OXIDES</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Solar Cell</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Semiconductors</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Band theory of solids</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Optical characteristics</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Transport characteristics</td>
<td>6</td>
</tr>
<tr>
<td>1.7 Importance of transparent conducting oxide (TCO)</td>
<td>8</td>
</tr>
<tr>
<td>Materials in solar cells</td>
<td></td>
</tr>
<tr>
<td>1.8 Nature of TCO lattice</td>
<td>10</td>
</tr>
<tr>
<td>1.9 Preparation techniques of Indium Oxide/Indium Tin Oxide films</td>
<td>15</td>
</tr>
<tr>
<td>1.10 Scope of the thesis</td>
<td>21</td>
</tr>
<tr>
<td>References</td>
<td>22</td>
</tr>
</tbody>
</table>

CHAPTER-2

<table>
<thead>
<tr>
<th>ITO/n-Si BASED SOLAR CELLS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>26</td>
</tr>
<tr>
<td>2.2 ITO/n-Si solar cells</td>
<td>27</td>
</tr>
<tr>
<td>2.3 ITO/GaAs solar cells</td>
<td>29</td>
</tr>
<tr>
<td>2.4 ITO/InP solar cells</td>
<td>30</td>
</tr>
<tr>
<td>2.5 ITO/CuInSe₂ based solar cells</td>
<td>30</td>
</tr>
<tr>
<td>2.6 ITO/CdTe based solar cells</td>
<td>31</td>
</tr>
<tr>
<td>2.7 Choice of silicon for ITO based solar cells</td>
<td>31</td>
</tr>
<tr>
<td>2.8 Summary</td>
<td>32</td>
</tr>
<tr>
<td>References</td>
<td>34</td>
</tr>
</tbody>
</table>
CHAPTER-3

PREPARATION OF ITO FILMS BY SPRAY PYROLYSIS TECHNIQUE AND CHARACTERIZATION EXPERIMENTS 37-70

3.1 Introduction 37
3.2 Preparation of ITO films by Spray pyrolysis 37
3.3 Characterization techniques 42
3.4 Fabrication of ITO/n-Si solar cells 59
3.5 Solar cell characterization techniques 62
3.6 Spectral response 67
References 69

PART-II

CHAPTER-4

PREPARATION OF INDIUM OXIDE FILMS BY SPRAY PYROLYSIS TECHNIQUE AND THEIR CHARACTERIZATION 71-86

4.1 Introduction 71
4.2 Effect of Indium chloride concentration in the solution 72
4.3 Dependence of Ethanol + Water mixture ratio 73
4.4 Optimization of Air flow rate 74
4.5 Influence of Substrate-Nozzle Distance (SND) 76
4.6 Influence of Substrate Temperature (T_s) 79
4.7 Surface morphology of the films 83
4.8 Summary and conclusion 84
References 86

CHAPTER-5

STUDIES ON THE EFFECT OF TIN DOPING ON INDIUM OXIDE FILMS 87-102

5.1 Introduction 87
5.2 Preparation of Tin doped InO_2 (InO_2 : Sn) films 87
5.3 Influence of Substrate Temperature (T_s) 88
5.4 Effect of Tin doping concentration 95
5.5 Optical studies on 5% Tin doped ITO films 98
5.6 Surface morphology 99
5.7 Summary and Conclusion 99
References 101

(vii)
CHAPTER-6

STUDIES ON ITO/n-Si JUNCTIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>103</td>
</tr>
<tr>
<td>6.2</td>
<td>Role of interfacial layer on the ITO/n-Si junction properties</td>
<td>104</td>
</tr>
<tr>
<td>6.3</td>
<td>Fabrication and characterization of ITO/n-Si junction</td>
<td>109</td>
</tr>
<tr>
<td>6.4</td>
<td>Spectral response studies on ITO/n-Si junctions</td>
<td>109</td>
</tr>
<tr>
<td>6.5</td>
<td>Dark I-V studies of ITO/n-Si junctions</td>
<td>111</td>
</tr>
<tr>
<td>6.6</td>
<td>I-V studies of ITO/n-Si junctions under different illuminations</td>
<td>112</td>
</tr>
<tr>
<td>6.7</td>
<td>The ITO/n-Si equilibrium energy band diagram</td>
<td>117</td>
</tr>
<tr>
<td>6.8</td>
<td>Surface morphology of ITO/n-Si junction</td>
<td>118</td>
</tr>
<tr>
<td>6.9</td>
<td>Summary and conclusion</td>
<td>120</td>
</tr>
</tbody>
</table>

References 121

PART-III

CHAPTER-7

PHOTOVOLTAIC SOLAR CELL PHENOMENON

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>123</td>
</tr>
<tr>
<td>7.2</td>
<td>Energy conversion process in a solar cell</td>
<td>123</td>
</tr>
<tr>
<td>7.3</td>
<td>Solar cell performance studies</td>
<td>126</td>
</tr>
<tr>
<td>7.4</td>
<td>Types of photovoltaic junctions</td>
<td>133</td>
</tr>
<tr>
<td>7.5</td>
<td>ITO based SIS solar cell</td>
<td>139</td>
</tr>
<tr>
<td>7.6</td>
<td>Summary and conclusion</td>
<td>140</td>
</tr>
</tbody>
</table>

References 141

CHAPTER-8

DEVELOPMENT OF COMPUTER SIMULATION PROGRAM USING SEVEN PARAMETER MODEL

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>142</td>
</tr>
<tr>
<td>8.2</td>
<td>Review of simulation using single-diode model</td>
<td>143</td>
</tr>
<tr>
<td>8.3</td>
<td>Solar cell output model</td>
<td>145</td>
</tr>
<tr>
<td>8.4</td>
<td>Curve fitting procedure for the I-V data</td>
<td>154</td>
</tr>
<tr>
<td>8.5</td>
<td>Computer simulation model</td>
<td>163</td>
</tr>
<tr>
<td>8.6</td>
<td>Simulation of ITO/n-Si solar cell output characteristics</td>
<td>165</td>
</tr>
<tr>
<td>8.7</td>
<td>Summary and conclusion</td>
<td>165</td>
</tr>
</tbody>
</table>

References 166
CHAPTER-9

STUDIES ON ITO/n-Si SOLAR CELLS UNDER ILLUMINATION USING COMPUTER SIMULATION PROGRAM 168-175

9.1 Introduction 168
9.2 Illumination characteristics of ITO/n-Si solar cells prepared at different substrate temperatures 169
9.3 Illuminated characteristics of ITO/n-Si solar cells prepared using different Tin doping concentrations 170
9.4 Effect of operating temperature on the ITO/n-Si solar cells 171
9.5 Studies on low efficiency ITO/n-Si solar cell 172
9.6 Summary and conclusion 174
References 175

CHAPTER-10

SUMMARY, CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 176-178

10.1 Summary and conclusion 176
10.2 Suggestions for future work 178

List of Publications 179
Appendix-I
Appendix-II