LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Various test results on cement</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Sieve analysis of fine aggregate (sand)</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Test results on sand</td>
<td>17</td>
</tr>
<tr>
<td>3.4</td>
<td>Sieve analysis of coarse aggregate</td>
<td>18</td>
</tr>
<tr>
<td>3.5</td>
<td>Various test results on natural coarse aggregate</td>
<td>18</td>
</tr>
<tr>
<td>3.6</td>
<td>Sieve analysis cold bonded fly ash aggregate</td>
<td>19</td>
</tr>
<tr>
<td>3.7</td>
<td>Various test results on cold bonded fly ash aggregate</td>
<td>20</td>
</tr>
<tr>
<td>3.8</td>
<td>Sieve analysis of cold bonded Metakaoline aggregate</td>
<td>21</td>
</tr>
<tr>
<td>3.9</td>
<td>Various test results on artificial cold bonded Metakaoline aggregate</td>
<td>21</td>
</tr>
<tr>
<td>3.10</td>
<td>Sieve analysis of cold bonded silica fume aggregate</td>
<td>22</td>
</tr>
<tr>
<td>3.11</td>
<td>Various test results on artificial cold bonded silica fume aggregate</td>
<td>23</td>
</tr>
<tr>
<td>4(a).1</td>
<td>Designations of different mixes</td>
<td>31</td>
</tr>
<tr>
<td>4(a).2</td>
<td>Density of cold bonded fly ash aggregate concrete</td>
<td>46</td>
</tr>
<tr>
<td>4(a).3</td>
<td>Cube Compressive strength of cold bonded fly ash aggregate concrete</td>
<td>46</td>
</tr>
<tr>
<td>4(a).4</td>
<td>Cylinder compressive strength of cold bonded fly ash aggregate concrete</td>
<td>47</td>
</tr>
<tr>
<td>4(a).5</td>
<td>Split tensile strength of cold bonded fly ash aggregate concrete</td>
<td>47</td>
</tr>
<tr>
<td>4(a).6</td>
<td>Ultimate load in Mode-II or DCN specimens with a/w=0.30 of cold bonded fly ash aggregate concrete</td>
<td>48</td>
</tr>
<tr>
<td>4(a).7</td>
<td>Ultimate load in Mode-II or DCN specimens with a/w=0.40 of cold bonded fly ash aggregate concrete</td>
<td>48</td>
</tr>
<tr>
<td>4(a).8</td>
<td>Ultimate load in Mode-II or DCN specimens with a/w=0.50 of cold bonded fly ash aggregate concrete</td>
<td>49</td>
</tr>
<tr>
<td>4(a).9</td>
<td>Ultimate load in Mode-II or DCN specimens with a/w=0.60 of cold bonded fly ash aggregate concrete</td>
<td>49</td>
</tr>
<tr>
<td>4(a).10</td>
<td>In-plane shear stress at ultimate load for DCN specimens with a/w=0.30 of cold bonded fly ash aggregate concrete</td>
<td>50</td>
</tr>
</tbody>
</table>
4(a).11 In-plane shear stress at ultimate load for DCN specimens with a/w=0.40 of cold bonded fly ash aggregate concrete
4(a).12 In-plane shear stress at ultimate load for DCN specimens with a/w=0.50 of cold bonded fly ash aggregate concrete
4(a).13 In-plane shear stress at ultimate load for DCN specimens with a/w=0.60 of cold bonded fly ash aggregate concrete
4(a).14 Variations between K_{IIC} vs $\frac{\varepsilon_f}{\varepsilon_c}$ ratio using formula obtained from fracture energy approach analysis
4(a).15 Variations between K_{IIC} vs $\frac{\varepsilon_f}{\varepsilon_c}$ ratio using formula obtained from finite element analysis
4(a).16 Modulus of elasticity of cold bonded fly ash aggregate concrete by using approach – I
4(a).17 Modulus of elasticity of cold bonded fly ash aggregate concrete by using approach – II takafumi formula
4(a).18 Flexural strength of cold bonded fly ash aggregate concrete
4(a).19 Flexural strength of cold bonded fly ash aggregate concrete by using I.S.code method
4(a).20 Strain energy stored in beams of cold bonded fly ash aggregate concrete
4(b).1 Designations of different mixes
4(b).2 Density of fiber reinforced cold bonded Fly ash aggregate concrete
4(b).3 Compressive strength of fiber reinforced cold bonded Fly ash aggregate concrete
4(b).4 Cylinders compressive strength of fiber reinforced cold bonded Fly ash aggregate concrete
4(b).5 Split tensile strength of fiber reinforced cold bonded Fly ash aggregate concrete
4(b).6 Ultimate load in Mode-II or DCN specimens with a/w=0.30 of fiber reinforced cold bonded Fly ash aggregate concrete
4(b).7 Ultimate load in Mode-II or DCN specimens with a/w=0.40 of fiber reinforced cold bonded Fly ash aggregate concrete
4(b).8 Ultimate load in Mode-II or DCN specimens with a/w=0.50 of fiber reinforced cold bonded Fly ash aggregate concrete 77
4(b).9 Ultimate load in Mode-II or DCN specimens with a/w=0.60 of fiber reinforced cold bonded Fly ash aggregate concrete 77
4(b).10 In-plane shear stress at ultimate load for DCN specimens with a/w=0.30 of fiber reinforced cold bonded Fly ash aggregate concrete 78
4(b).11 In-plane shear stress at ultimate load for DCN specimens with a/w=0.40 of fiber reinforced cold bonded Fly ash aggregate concrete 78
4(b).12 In-plane shear stress at ultimate load for DCN specimens with a/w=0.50 of fiber reinforced cold bonded Fly ash aggregate concrete 79
4(b).13 In-plane shear stress at ultimate load for DCN specimens with a/w=0.60 of fiber reinforced cold bonded Fly ash aggregate concrete 79
4(b).14 Variation between K_{IIc} vs $\frac{\mu}{\lambda}$ ratio using formula obtained from fracture energy approach analysis 80
4(b).15 Variation between K_{IIc} vs $\frac{\mu}{\lambda}$ ratio using formula obtained from finite element analysis 81
4(b).16 Modulus of fiber reinforced elasticity of fiber reinforced cold bonded Fly ash aggregate concrete by using approach - I 82
4(b).17 Modulus of fiber reinforced elasticity of fiber reinforced cold bonded Fly ash aggregate concrete by using approach – II takafumi formula 82
4(b).18 Flexural strength of fiber reinforced cold bonded Fly ash aggregate concrete 83
4(b).19 Flexural strength of fiber reinforced cold bonded Fly ash aggregate concrete by using I.S.code method 83
4(b).20 Strain energy stored in beams of fiber reinforced cold bonded Fly ash aggregate concrete 84
4(c).1 Designations of different mixes 98
4(c).2 Densities of cold bonded fly ash aggregate concrete with fly ash as admixture 107
4(c).3 Compressive strength of cold bonded fly ash aggregate concrete with fly ash as admixture 107
4(c).4 Cylinder compressive strength of cold bonded fly ash aggregate concrete with fly ash as admixture

4(c).5 Split tensile strength of cold bonded fly ash aggregate concrete with fly ash as admixture

4(c).6 Young’s modulus of cold bonded fly ash aggregate concrete with fly ash as admixture based on I.S.code method approach - I

4(c).7 Young’s modulus of cold bonded fly ash aggregate concrete with fly ash as admixture based on approach - II

4(c).8 Flexural strength of cold bonded fly ash aggregate concrete with fly ash as admixture

4(c).9 Flexural strength of cold bonded fly ash aggregate concrete with fly ash as admixture based on I.S.code formula

4(c).10 Durability of cold bonded fly ash aggregate with 0% of fly ash as admixture and 0% chemical (controlled specimen)

4(c).11 Durability of cold bonded fly ash aggregate with 5% of fly ash as admixture and 0% chemical (controlled specimen)

4(c).12 Durability of cold bonded fly ash aggregate with 10% of fly ash as admixture and 0% chemical (controlled specimen)

4(c).13 Durability of cold bonded fly ash aggregate with 15% of fly ash as admixture and 0% chemical (controlled specimen)

4(c).14 Durability of cold bonded fly ash aggregate with 0% of fly ash as admixture and 5% of H\textsubscript{2}SO\textsubscript{4}

4(c).15 Durability of cold bonded fly ash aggregate with 5% of fly ash as admixture and 5% of H\textsubscript{2}SO\textsubscript{4}

4(c).16 Durability of cold bonded fly ash aggregate with 10% of fly ash as admixture and 5% of H\textsubscript{2}SO\textsubscript{4}

4(c).17 Durability of cold bonded fly ash aggregate with 15% of fly ash as admixture and 5% of H\textsubscript{2}SO\textsubscript{4}

4(c).18 Durability of cold bonded fly ash aggregate with 0% of fly ash as admixture and 5% of HCl

4(c).19 Durability of cold bonded fly ash aggregate with 5% of fly ash as admixture and 5% of HCl
admixture and 5% of Hcl

4(c).20 Durability of cold bonded fly ash aggregate with 10% of fly ash as admixture and 5% of Hcl 116

4(c).21 Durability of cold bonded fly ash aggregate with 15% of fly ash as admixture and 5% of Hcl 116

4(c).22 Durability of cold bonded fly ash aggregate with 0% of fly ash as admixture and 5% of Na\textsubscript{2}SO\textsubscript{4} 117

4(c).23 Durability of cold bonded fly ash aggregate with 5% of fly ash as admixture and 5% of Na\textsubscript{2}SO\textsubscript{4} 117

4(c).24 Durability of cold bonded fly ash aggregate with 10% of fly ash as admixture and 5% of Na\textsubscript{2}SO\textsubscript{4} 118

4(c).25 Durability of cold bonded fly ash aggregate with 15% of fly ash as admixture and 5% of Na\textsubscript{2}SO\textsubscript{4} 118

4(c).26 Weight losses of cubes after 28 days curing 119

4(c).27 Density results for 28 days curing at elevated (100\textdegree c) temperature 119

4(c).28 Cube Compressive strength of cold bonded fly ash aggregate concrete at elevated (100\textdegree c) temperature 120

4(c).29 Flexural strength of cold bonded fly ash aggregate concrete at elevated (100\textdegree c) temperature. 120

4(c).30 Residual strength results 121

4(d).1 Matching of chemical compounds from mineral group data by using x’pert high score software for 0% of fly ash aggregate concrete results at 28 days curing (f-0) 145

4(d).2 Pattern list identified from mineralogical group data by using X’pert high score software for 0% of fly ash aggregate concrete results at 28 days curing (f-0) 146

4(d).3 Matching of chemical compounds from mineral group data by using x’pert high score software for 25% of fly ash aggregate concrete results at 28 days curing (f-25) 147

4(d).4 Pattern list identified from mineral group data by using x’pert high score software for 25% of fly ash aggregate concrete results at 28 days 148
curing (f-25)

4(d).5 Matching of chemical compounds from mineral group data by using x’pert high score software for 25% of fly ash aggregate concrete results at 90 days curing (f-25) 149

4(d).6 Pattern list identified from mineral group data by using x’pert high score software for 25% of fly ash aggregate concrete results at 90 days curing (f-25) 150

4(d).7 Matching of chemical compounds from mineral group data by using x’pert high score software for 50% of fly ash aggregate concrete results at 28 days curing (f-50) 151

4(d).8 Pattern list identified from mineral group data by using x’pert high score software for 50% of fly ash aggregate concrete results at 28 days curing (f-50) 152

4(d).9 Matching of chemical compounds from mineral group data by using x’pert high score software for 50% of fly ash aggregate concrete results at 90 days curing (f-50) 153

4(d).10 Pattern list identified from mineral group data by using x’pert high score software for 50% of fly ash aggregate concrete results at 90 days curing (f-50) 154

4(d).11 Matching of chemical compounds from mineral group data by using x’pert high score software for 75% of fly ash aggregate concrete results at 28 days curing (f-75) 155

4(d).12 Pattern list identified from mineral group data by using x’pert high score software for 75% of fly ash aggregate concrete results at 28 days curing (f-75) 156

4(d).13 Matching of chemical compounds from mineral group data by using x’pert high score software for 75% of fly ash aggregate concrete results at 90 days curing (f-75) 157

4(d).14 Pattern list identified from mineral group data by using x’pert high score software for 75% of fly ash aggregate concrete results at 90 days curing (f-75) 158
4(d).15 Matching of chemical compounds from mineral group data by using x’pert high score software for 100% of fly ash aggregate concrete results at 28 days curing (f-100) 159

4(d).16 Pattern list identified from mineral group data by using x’pert high score software for 100% of fly ash aggregate concrete results at 28 days curing (f-100) 160

4(d).17 Matching of chemical compounds from mineral group data by using x’pert high score software for 100% of fly ash aggregate concrete results at 90 days curing (f-100) 161

4(d).18 Pattern list identified from mineral group data by using x’pert high score software for 100% of fly ash aggregate concrete results at 90 days curing (f-100) 162

5(a).1 Designations of different mixes 173

5(a).2 Density of cold bonded Metakaoline aggregate concrete 180

5(a).3 Compressive strength of cold bonded Metakaoline aggregate concrete 180

5(a).4 Cylinder compressive strength of cold bonded Metakaoline aggregate concrete 181

5(a).5 Split tensile strength of cold bonded Metakaoline aggregate concrete 181

5(a).6 Ultimate load in Mode-II or DCN specimens with a/w=0.30 of cold bonded Metakaoline aggregate concrete 182

5(a).7 Ultimate load in Mode-II or DCN specimens with a/w=0.40 of cold bonded Metakaoline aggregate concrete 182

5(a).8 Ultimate load in Mode-II or DCN specimens with a/w=0.50 of cold bonded Metakaoline aggregate concrete 183

5(a).9 Ultimate load in Mode-II or DCN specimens with a/w=0.60 of cold bonded Metakaoline aggregate concrete 183

5(a).10 In-plane shear stress at ultimate load for DCN specimens with a/w=0.30 of cold bonded Metakaoline aggregate concrete 184

5(a).11 In-plane shear stress at ultimate load for DCN specimens with a/w=0.40 of cold bonded Metakaoline aggregate concrete 184

5(a).12 In-plane shear stress at ultimate load for DCN specimens with
5(a.13) In-plane shear stress at ultimate load for DCN specimens with a/w=0.60 of cold bonded Metakaoline aggregate concrete

5(a.14) Variation between K_{IIc} vs $\frac{\sigma}{\sqrt{\alpha}}$ ratio using formula obtained from fracture energy approach analysis

5(a.15) Variation between K_{IIc} vs $\frac{\sigma}{\sqrt{\alpha}}$ ratio using formula obtained from finite element analysis

5(a.16) Flexural strength of cold bonded Metakaoline aggregate concrete

5(a.17) Flexural strength of cold bonded Metakaoline aggregate concrete by using I.S.code method

5(a.18) Modulus of elasticity of cold bonded Metakaoline aggregate concrete by using approach - I

5(a.19) Modulus of elasticity of cold bonded Metakaoline aggregate concrete by using approach – II takafumi formula

5(a.20) Strain energy stored in beams of cold bonded Metakaoline aggregate concrete

5(b.1) Designations of different mixes

5(b.2) Density of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b.3) Compressive strength of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b.4) Cylinder compressive strength of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b.5) Split tensile strength of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b.6) Ultimate load in Mode-II or DCN specimens with a/w=0.30 of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b.7) Ultimate load in Mode-II or DCN specimens with a/w=0.40 of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b.8) Ultimate load in Mode-II or DCN specimens with a/w=0.50 of fiber reinforced cold bonded Metakaoline aggregate concrete
5(b).9 Ultimate load in Mode-II or DCN specimens with a/w=0.60 of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b).10 In-plane shear stress at ultimate load for DCN specimens with a/w=0.30 of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b).11 In-plane shear stress at ultimate load for DCN specimens with a/w=0.40 of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b).12 In-plane shear stress at ultimate load for DCN specimens with a/w=0.50 of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b).13 In-plane shear stress at ultimate load for DCN specimens with a/w=0.60 of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b).14 Variation between $K_{IIC} \text{ vs } \delta/\gamma$ ratio using formula obtained from fracture energy approach analysis

5(b).15 Variation between $K_{IIC} \text{ vs } \delta'/\gamma'$ ratio using formula obtained from finite element analysis

5(b).16 Flexural strength of fiber reinforced cold bonded Metakaoline aggregate concrete

5(b).17 Flexural strength of fiber reinforced cold bonded Metakaoline aggregate concrete by using I.S.code method

5(b).18 Modulus of fiber reinforced elasticity of fiber reinforced cold bonded Metakaoline aggregate concrete by using approach - I

5(b).19 Modulus of fiber reinforced elasticity of fiber reinforced cold bonded Metakaoline aggregate concrete by using approach – II takafumi formula

5(b).20 Strain energy stored in beams of fiber reinforced cold bonded Metakaoline aggregate concrete

5(c).1 Designations of different mixes

5(c).2 Densities of cold bonded Metakaoline aggregate with Metakaoline as
admixture

5(c).3 Cube Compressive Strength Of cold bonded Metakaoline aggregate with Metakaoline as admixture

5(c).4 Cylinder Compressive Strength Of cold bonded Metakaoline aggregate with Metakaoline as admixture

5(c).5 Split Tensile Strength Of cold bonded Metakaoline aggregate with Metakaoline as admixture

5(c).6 Flexural Strength Results Based On EmpHERical Formula

5(c).7 Flexural Strength Results Based On I.S.Code Formula

5(c).8 Strain Energy Stored In Beams

5(c).9 Young’s Modulus Based On I.S Code Method

5(c).10 Young’s Modulus Based On EmpHERical Formula (Takafumi’s)

5(c).11 Durability of cold bonded Metakaoline aggregate with 0% of Metakaoline as admixture and 0% chemical (controlled specimen)

5(c).12 Durability of cold bonded Metakaoline aggregate with 5% of Metakaoline as admixture and 0% chemical (controlled specimen)

5(c).13 Durability of cold bonded Metakaoline aggregate with 10% of Metakaoline as admixture and 0% chemical (controlled specimen)

5(c).14 Durability of cold bonded Metakaoline aggregate with 15% of Metakaoline as admixture and 0% chemical (controlled specimen)

5(c).15 Durability of cold bonded Metakaoline aggregate with 0% of Metakaoline as admixture and 5% of H₂SO₄

5(c).16 Durability of cold bonded Metakaoline aggregate with 5% of Metakaoline as admixture and 5% of H₂SO₄

5(c).17 Durability of cold bonded Metakaoline aggregate with 10% of Metakaoline as admixture and 5% of H₂SO₄

5(c).18 Durability of cold bonded Metakaoline aggregate with 15% of Metakaoline as admixture and 5% of H₂SO₄

5(c).19 Durability of cold bonded Metakaoline aggregate with 0% of Metakaoline as admixture and 5% of Hcl

5(c).20 Durability of cold bonded Metakaoline aggregate with 5% of
Metakaoline as admixture and 5% of HCl

5(c).21 Durability of cold bonded Metakaoline aggregate with 10% of Metakaoline as admixture and 5% of HCl 252

5(c).22 Durability of cold bonded Metakaoline aggregate with 15% of Metakaoline as admixture and 5% of HCl 252

5(c).23 Durability of cold bonded Metakaoline aggregate with 0% of Metakaoline as admixture and 5% of Na\textsubscript{2}SO\textsubscript{4} 253

5(c).24 Durability of cold bonded Metakaoline aggregate with 5% of Metakaoline as admixture and 5% of Na\textsubscript{2}SO\textsubscript{4} 253

5(c).25 Durability of cold bonded Metakaoline aggregate with 10% of Metakaoline as admixture and 5% of Na\textsubscript{2}SO\textsubscript{4} 254

5(c).26 Durability of cold bonded Metakaoline aggregate with 15% of Metakaoline as admixture and 5% of Na\textsubscript{2}SO\textsubscript{4} 254

5(c).27 Densities of cold bonded Metakaoline aggregate at elevated temperature 255

5(c).28 Cube compressive strength of cold bonded Metakaoline aggregate at elevated temperature 255

5(d).1 Matching of chemical compounds from mineral group data by using x’ pert high score software for 0% of Metakaoline aggregate concrete results at 28 days curing (M-0) 272

5(d).2 Pattern list identified from mineralogical group data by using X’ pert high score software for 0% of Metakaoline aggregate concrete results at 28 days curing (M-0) 273

5(d).3 Matching of chemical compounds from mineral group data by using x’ pert high score software for 25% of Metakaoline aggregate concrete results at 28 days curing (M-25) 274

5(d).4 Pattern list identified from mineral group data by using x’ pert high score software for 25% of Metakaoline aggregate concrete results at 28 days curing (M-25) 275

5(d).5 Matching of chemical compounds from mineral group data by using x’ pert high score software for 25% of Metakaoline aggregate concrete 276
results at 90 days curing (M-25)

5(d).6 Pattern list identified from mineral group data by using x’ pert high score software for 25% of Metakaoline aggregate concrete results at 90 days curing (M-25) 277

5(d).7 Matching of chemical compounds from mineral group data by using x’ pert high score software for 50% of Metakaoline aggregate concrete results at 28 days curing (M-50) 278

5(d).8 Pattern list identified from mineral group data by using x’ pert high score software for 50% of Metakaoline aggregate concrete results at 28 days curing (M-50) 279

5(d).9 Matching of chemical compounds from mineral group data by using x’ pert high score software for 50% of Metakaoline aggregate concrete results at 90 days curing (M-50) 280

5(d).10 Pattern list identified from mineral group data by using x’ pert high score software for 50% of Metakaoline aggregate concrete results at 90 days curing (M-50) 281

5(d).11 Matching of chemical compounds from mineral group data by using x’ pert high score software for 75% of Metakaoline aggregate concrete results at 28 days curing (M-75) 282

5(d).12 Pattern list identified from mineral group data by using x’ pert high score software for 75% of Metakaoline aggregate concrete results at 28 days curing (M-75) 283

5(d).13 Matching of chemical compounds from mineral group data by using x’ pert high score software for 75% of Metakaoline aggregate concrete results at 90 days curing (M-75) 284

5(d).14 Pattern list identified from mineral group data by using x’ pert high score software for 75% of Metakaoline aggregate concrete results at 90 days curing (M-75) 285

5(d).15 Matching of chemical compounds from mineral group data by using x’ pert high score software for 100% of Metakaoline aggregate concrete results at 28 days curing (M-100) 286
5(d).16 Pattern list identified from mineral group data by using x’ pert high score software for 100% of Metakaoline aggregate concrete results at 28 days curing (M-100) 287

5(d).17 Matching of chemical compounds from mineral group data by using x’ pert high score software for 100% of Metakaoline aggregate concrete results at 90 days curing (M-100) 288

5(d).18 Pattern list identified from mineral group data by using x’ pert high score software for 100% of Metakaoline aggregate concrete results at 90 days curing (M-100) 289

6(a).1 Designations of different mixes 300

6(a).2 Density of cold bonded Silica fume aggregate concrete 306

6(a).3 Cube Compressive strength of cold bonded Silica fume aggregate concrete 307

6(a).4 Cylinder compressive strength of cold bonded Silica fume aggregate concrete 308

6(a).5 Split tensile strength of cold bonded Silica fume aggregate concrete 309

6(a).6 Ultimate load in Mode-II or DCN specimens with a/w=0.30 of cold bonded Silica fume aggregate concrete 310

6(a).7 Ultimate load in Mode-II or DCN specimens with a/w=0.40 of cold bonded Silica fume aggregate concrete 311

6(a).8 Ultimate load in Mode-II or DCN specimens with a/w=0.50 of cold bonded Silica fume aggregate concrete 312

6(a).9 Ultimate load in Mode-II or DCN specimens with a/w=0.60 of cold bonded Silica fume aggregate concrete 313

6(a).10 In-plane shear stress at ultimate load for DCN specimens with a/w=0.30 of cold bonded Silica fume aggregate concrete 314

6(a).11 In-plane shear stress at ultimate load for DCN specimens with a/w=0.40 of cold bonded Silica fume aggregate concrete 315

6(a).12 In-plane shear stress at ultimate load for DCN specimens with a/w=0.50 of cold bonded Silica fume aggregate concrete 316

6(a).13 In-plane shear stress at ultimate load for DCN specimens with 317
a/w = 0.60 of cold bonded Silica fume aggregate concrete

6(a).14 Variation between K_{IIC} vs $\frac{c_t}{h_t}$ ratio using formula obtained from fracture energy approach analysis 318

6(a).15 Variation between K_{IIC} vs $\frac{c_t}{h_t}$ ratio using formula obtained from finite element analysis 319

6(a).16 Flexural strength of cold bonded Silica fume aggregate concrete 320

6(a).17 Flexural strength of cold bonded Silica fume aggregate concrete by using I.S.code method 321

6(a).18 Modulus of elasticity of cold bonded Silica fume aggregate concrete by using approach - I 322

6(a).19 Modulus of elasticity of cold bonded Silica fume aggregate concrete by using approach – II takafumi formula 323

6(a).20 Strain energy stored in beams of cold bonded Silica fume aggregate concrete 324

6(b).1 Matching of chemical compounds from mineral group data by using x’pert high score software for 0% of Metakaoline aggregate concrete results at 28 days curing (S-0) 344

6(b).2 Pattern list identified from mineralogical group data by using X’pert high score software for 0% of Metakaoline aggregate concrete results at 28 days curing (S-0) 345

6(b).3 Matching of chemical compounds from mineral group data by using x’pert high score software for 25% of Metakaoline aggregate concrete results at 28 days curing (S-25) 346

6(b).4 Pattern list identified from mineral group data by using x’pert high score software for 25% of Metakaoline aggregate concrete results at 28 days curing (S-25) 347

6(b).5 Matching of chemical compounds from mineral group data by using x’pert high score software for 25% of Metakaoline aggregate concrete results at 90 days curing (S-25) 348

6(b).6 Pattern list identified from mineral group data by using x’pert high score software for 25% of Metakaoline aggregate concrete results at 349
90 days curing (S-25)

6(b).7 Matching of chemical compounds from mineral group data by using x’ pert high score software for 50% of Metakaoline aggregate concrete results at 28 days curing (S-50)

6(b).8 Pattern list identified from mineral group data by using x’ pert high score software for 50% of Metakaoline aggregate concrete results at 28 days curing (S-50)

6(b).9 Matching of chemical compounds from mineral group data by using x’ pert high score software for 50% of Metakaoline aggregate concrete results at 90 days curing (S-50)

6(b).10 Pattern list identified from mineral group data by using x’ pert high score software for 50% of Metakaoline aggregate concrete results at 90 days curing (S-50)

6(b).11 Matching of chemical compounds from mineral group data by using x’ pert high score software for 75% of Metakaoline aggregate concrete results at 28 days curing (S-75)

6(b).12 Pattern list identified from mineral group data by using x’ pert high score software for 75% of Metakaoline aggregate concrete results at 28 days curing (S-75)

6(b).13 Matching of chemical compounds from mineral group data by using x’ pert high score software for 75% of Metakaoline aggregate concrete results at 90 days curing (S-75)

6(b).14 Pattern list identified from mineral group data by using x’ pert high score software for 75% of Metakaoline aggregate concrete results at 90 days curing (S-75)

6(b).15 Matching of chemical compounds from mineral group data by using x’ pert high score software for 100% of Metakaoline aggregate concrete results at 28 days curing (S-100)

6(b).16 Pattern list identified from mineral group data by using x’ pert high score software for 100% of Metakaoline aggregate concrete results at 28 days curing (S-100)
6(b).17 Matching of chemical compounds from mineral group data by using x’pert high score software for 100% of Metakaoline aggregate concrete results at 90 days curing (S-100)

6(b).18 Pattern list identified from mineral group data by using x’ pert high score software for 100% of Metakaoline aggregate concrete results at 90 days curing (S-100)

6(b).19 Pattern list identified from mineral group data by using x’ pert high score software for 100% of pelletized aggregate concrete results

6(b).20 Comparison table of density

6(b).21 Comparison table of compressive strength (cube)

6(b).22 Comparison table of compressive strength (cylinder)

6(b).23 Comparison table of split tensile strength

6(b).24 Comparison table of ultimate load in KN (For a/w ratio = 0.30)

6(b).25 Comparison table of ultimate load in KN (For a/w ratio = 0.40)

6(b).26 Comparison table of ultimate load in KN (For a/w ratio = 0.50)

6(b).27 Comparison table of ultimate load in KN (For a/w ratio = 0.60)

6(b).28 Comparison table of in-plane shear strength in N/mm² (For a/w ratio = 0.30)

6(b).29 Comparison table of in-plane shear strength in N/mm² (For a/w ratio = 0.40)

6(b).30 Comparison table of in-plane shear strength in N/mm² (For a/w ratio = 0.50)

6(b).31 Comparison table of in-plane shear strength in N/mm² (For a/w ratio = 0.60)

6(b).32 Comparison table of flexural strength in N/mm² based on experimental investigation

6(b).33 Comparison table of flexural strength in N/mm² based on I.S.Code formula

6(b).34 Comparison table of strain energy stored in beams

6(b).35 Comparison table of young’s modulus in N/mm² based on I.S.code formula
<table>
<thead>
<tr>
<th>6(b).36</th>
<th>Comparison table of young’s modulus in N/mm² based on empirical formula</th>
<th>388</th>
</tr>
</thead>
<tbody>
<tr>
<td>6(b).37</td>
<td>Cost analysis for the manufacturing of artificial cold bonded light weight pelletized aggregate</td>
<td>389</td>
</tr>
<tr>
<td>6(b).38</td>
<td>Cost analysis of cold bonded pelletized aggregate concrete</td>
<td>390</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Variation of crack size with load and time</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Variation of residual strength of material with crack size and time</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Different modes of cracking</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Details of DCN specimen geometry</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4(a).1</td>
<td>Test set up of compressive strength of specimens</td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>4(a).2</td>
<td>Test set up of split tensile strength of specimens</td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>4(a).3</td>
<td>Test set up of flexural strength of specimens</td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>4(a).4</td>
<td>Superimposed Variation between density and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing</td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4(a).5</td>
<td>Superimposed Variation between Cube compressive strength and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.</td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4(a).6</td>
<td>Superimposed Variation between Cylinder compressive strength and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.</td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4(a).7</td>
<td>Superimposed Variation between Split tensile strength and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.</td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4(a).8</td>
<td>Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.30 and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.</td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4(a).9</td>
<td>Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.40 and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.</td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4(a).10</td>
<td>Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.50 and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing</td>
</tr>
<tr>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>
4(a).11 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.60 and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing

4(a).12 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.30 and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing

4(a).13 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.40 and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing

4(a).14 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.50 and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing

4(a).15 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.60 and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing

4(a).16 Superimposed Variation between young’s modulus based on I.S.Code formula and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

4(a).17 Superimposed Variation between young’s modulus based on empirical formula and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing

4(a).18 Superimposed Variation between flexural strength based on empirical formula and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing

4(a).19 Superimposed Variation between flexural strength based on I.S.Code formula and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

4(a).20 Superimposed Variations between strain energy stored in beams and percentage of fly ash aggregate.

4(b).1 Superimposed Variation between density and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing
4(b).2 Superimposed Variation between Cube compressive strength and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing.

4(b).3 Superimposed Variation between Cylinder compressive strength and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing.

4(b).4 Superimposed Variation between Split tensile strength and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing.

4(b).5 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.30 and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing.

4(b).6 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.40 and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing.

4(b).7 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.50 and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing.

4(b).8 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.60 and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing.

4(b).9 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.30 and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing.

4(b).10 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.40 and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

4(b).11 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.50 and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

4(b).12 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.60 and Percentage of Fly ash aggregate
replacing natural aggregate for 28, 90, 180 and 365 days curing.

4(b).13 Superimposed Variation between young’s modulus based on I.S.Code formula and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

4(b).14 Superimposed Variation between young’s modulus based on empherical formula and Percentage of Fly ash aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

4(b).15 Superimposed Variation between flexural strength based on empherical formula and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing.

4(b).16 Superimposed Variation between flexural strength based on I.S.Code formula and Percentage of Fly ash aggregate replacing natural aggregate for 28 days curing.

4(b).17 Variations between strain energy stored in beams and percentage of FA aggregate of 28 days curing

4(c).1 Superimposed Variation between density and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixture of 0, 5, 10 and 15%.

4(c).2 Superimposed Variation between density and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixture of 0, 5, 10 and 15%.

4(c).3 Superimposed Variation between cube compressive strength and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixture of 0, 5, 10 and 15%.

4(c).4 Superimposed Variation between cube compressive strength and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixture of 0, 5, 10 and 15%.

4(c).5 Superimposed Variation between cylinder compressive strength and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixture of 0, 5, 10 and 15%.

4(c).6 Superimposed Variation between cylinder compressive strength and
Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixtures of 0, 5, 10 and 15%.

4(c).7 Superimposed Variation between split tensile strength and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixtures of 0, 5, 10 and 15%.

4(c).8 Superimposed Variation between split tensile strength and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixtures of 0, 5, 10 and 15%.

4(c).9 Superimposed Variation between young’s modulus based on I.S.code and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixtures of 0, 5, 10 and 15%.

4(c).10 Superimposed Variation between young’s modulus based on I.S.code and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixtures of 0, 5, 10 and 15%.

4(c).11 Superimposed Variation between young’s modulus based on empherical formula and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixtures of 0, 5, 10 and 15%.

4(c).12 Superimposed Variation between young’s modulus based on empherical formula and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixtures of 0, 5, 10 and 15%.

4(c).13 Superimposed Variation between flexural strength and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixtures of 0, 5, 10 and 15%.

4(c).14 Superimposed Variation between flexural strength and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixtures of 0, 5, 10 and 15%.

4(c).15 Superimposed Variation between flexural strength based on I.S.code and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixture of 0, 5, 10 and 15%.
4(c).16 Superimposed Variation between flexural strength I.S.code and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixtures of 0, 5, 10 and 15%.

4(c).17 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixtures of 0, 5, 10 and 15%. (controlled specimens)

4(c).18 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixtures of 0, 5, 10 and 15. (controlled specimens)

4(c).19 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixtures of 0, 5, 10 and 15%. (5% H₂SO₄)

4(c).20 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixtures of 0, 5, 10 and 15%. (5% H₂SO₄)

4(c).21 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixtures of 0, 5, 10 and 15%. (5% Hcl)

4(c).22 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixtures of 0, 5, 10 and 15%. (5% Hcl)

4(c).23 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing with fly ash as admixtures of 0, 5, 10 and 15%. (5% Na₂SO₄)

4(c).24 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing with fly ash as admixtures of 0, 5, 10 and 15%. (5% Na₂SO₄)

4(c).25 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing at elevated temperature

4(c).26 Superimposed Variation between weight of specimen and Percentage
of fly ash aggregate replacing natural aggregate for 90 days curing at elevated temperature

4(c).27 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 28 days curing at elevated temperature

4(c).28 Superimposed Variation between weight of specimen and Percentage of fly ash aggregate replacing natural aggregate for 90 days curing at elevated temperature

4(d).1 Shows the morphology of the structure of specimen at magnification at 1.00kx for F-0 mix at 28 days of curing

4(d).2 Shows the morphology of the structure of specimen at magnification at 5.00kx for F-25 mix at 28 days of curing

4(d).3 Shows the morphology of the structure of specimen at magnification at 5.00kx for F-25 mix at 90 days of curing

4(d).4 Shows the morphology of the structure of specimen at magnification at 500x for F-50 mix at 28 days of curing

4(d).5 Shows the morphology of the structure of specimen at magnification at 1.00kx for F-50 mix at 90 days of curing

4(d).6 Shows the morphology of the structure of specimen at magnification at 1.00kx for F-75 mix at 28 days of curing

4(d).7 Shows the morphology of the structure of specimen at magnification at 500x for F-75 mix at 90 days of curing

4(d).8 Shows the morphology of the structure of specimen at magnification at 1.00kx for F-100 mix at 28 days of curing

4(d).9 Shows the morphology of the structure of specimen at magnification at 5.00kx for F-100 mix at 90 days of curing

4(d).10 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-0 mix for 28 days curing period. (peak list)

4(d).11 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-0 mix for 28 days curing period.
4(d).12 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-25 mix for 28 days curing period. (peak list) 164
4(d).13 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-25 mix for 28 days curing period. 164
4(d).14 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-25 mix for 90 days curing period. (peak list) 165
4(d).15 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-25 mix for 90 days curing period. 165
4(d).16 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-50 mix for 28 days curing period. (peak list) 166
4(d).17 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-50 mix for 28 days curing period. 166
4(d).18 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-50 mix for 90 days curing period. (peak list) 167
4(d).19 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-50 mix for 90 days curing period. 167
4(d).20 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-75 mix for 28 days curing period. (peak list) 168
4(d).21 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-75 mix for 28 days curing period. 168
4(d).22 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-75 mix for 90 days curing period. (peak list) 169
4(d).23 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-75 mix for 90 days curing period. 169
4(d).24 Using X’Pert High score soft ware from mineral group data matched
by chemical compounds of F-100 mix for 28 days curing period. (peak list)

4(d).25 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-100 mix for 28 days curing period.

4(d).26 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-100 mix for 90 days curing period. (peak list)

4(d).27 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of F-100 mix for 90 days curing period.

5(a).1 Superimposed Variation between density and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).2 Superimposed Variation between Cube compressive strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).3 Superimposed Variation between Cylinder compressive strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).4 Superimposed Variation between Split tensile strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).5 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.30 and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).6 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.40 and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).7 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.50 and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).8 Superimposed Variation between Ultimate Load in Mode-II of DCN
specimens with $a/w = 0.60$ and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).9 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with $a/w = 0.30$ and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).10 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with $a/w = 0.40$ and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).11 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with $a/w = 0.50$ and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).12 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with $a/w = 0.60$ and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).13 Superimposed Variation between flexural strength based on empirical formula and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).14 Superimposed Variation between flexural strength based on I.S.Code formula and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).15 Superimposed Variation between young’s modulus based on I.S.Code formula and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).16 Superimposed Variation between young’s modulus based on empirical formula and Percentage of Metakaoline aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

5(a).17 Superimposed Variation between strain energy stored in beams and...
percentage of Metakaoline aggregate.

5(b).1 Superimposed Variation between Density and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing

5(b).2 Superimposed Variations between Cube compressive strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing.

5(b).3 Superimposed Variation between Cylinder compressive strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing

5(b).4 Superimposed Variation between Split tensile strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing

5(b).5 Superimposed Variation between Ultimate Load and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing of a/w = 0.30.

5(b).6 Superimposed Variation between Ultimate Load and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing of a/w = 0.40.

5(b).7 Superimposed Variation between Ultimate Load and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing of a/w = 0.50

5(b).8 Superimposed Variation between Ultimate Load and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing of a/w = 0.60

5(b).9 Superimposed Variation between In-Plane shear strength at Ultimate Load and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing of a/w = 0.30

5(b).10 Superimposed Variation between In-Plane shear strength at Ultimate Load and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing of a/w = 0.40
5(b).11 Superimposed Variation between In-Plane shear strength at Ultimate Load and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing of $a/w = 0.50$

5(b).12 Superimposed Variation between In-Plane shear strength at Ultimate Load and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing of $a/w = 0.60$

5(b).13 Superimposed Variation between Flexural strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing

5(b).14 Superimposed Variation between Flexural strength based on I.S.Code and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing

5(b).15 Superimposed Variation between Young’s modulus based on I.S.Code and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing

5(b).16 Superimposed Variation between Young’s modulus based on I.S.Code and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days of curing.

5(b).17 Variations between strain energy stored in beams and percentage of Metakaoline aggregate of 28 days curing.

5(c).1 Superimposed Variation between density and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with metakaoline as admixtures of 0, 5, 10 and 15%.

5(c).2 Superimposed Variation between density and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with metakaoline as admixtures of 0, 5, 10 and 15%.

5(c).3 Superimposed Variation between cube compressive strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with metakaoline as admixtures of 0, 5, 10 and 15%.

5(c).4 Superimposed Variation between cube compressive strength and Percentage of Metakaoline aggregate replacing natural aggregate for 90
days curing with metakaoline as admixtures of 0, 5, 10 and 15%.

5(c.5) Superimposed Variation between split tensile strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with metakaoline as admixtures of 0, 5, 10 and 15%. 256

5(c.6) Superimposed Variation between split tensile strength and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with metakaoline as admixtures of 0, 5, 10 and 15%. 256

5(c.7) Superimposed Variation between cylinder compressive strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with metakaoline as admixtures of 0, 5, 10 and 15%. 257

5(c.8) Superimposed Variation between cylinder compressive strength and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with metakaoline as admixtures of 0, 5, 10 and 15%. 257

5(c.9) Superimposed Variation between flexural strength and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with metakaoline as admixtures of 0, 5, 10 and 15%. 257

5(c.10) Superimposed Variation between flexural strength and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with metakaoline as admixtures of 0, 5, 10 and 15%. 257

5(c.11) Superimposed Variation between flexural strength based on I.S.code and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with metakaoline as an admixture of 0, 5, 10 and 15%. 257

5(c.12) Superimposed Variation between flexural strength I.S.code and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with metakaoline as admixtures of 0, 5, 10 and 15%. 257

5(c.13) Superimposed Variation between young’s modulus based on I.S.code and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with metakaoline as an admixtures of 0, 5, 10 and 15%. 258

5(c.14) Superimposed Variation between young’s modulus based on I.S.code 258
and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with metakaoline as an admixtures of 0, 5, 10 and 15%.

5(c).15 Superimposed Variation between young’s modulus based on empherical formula and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with metakaoline as an admixtures of 0, 5, 10 and 15%.

5(c).16 Superimposed Variation between young’s modulus based on empherical formula and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with metakaoline as an admixtures of 0, 5, 10 and 15%.

5(c).17 Superimposed Variation between density and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing at elevated temperature.

5(c).18 Superimposed Variation between cube compressive and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing at elevated temperature.

5(c).19 Superimposed Variation between weights and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with admixtures of 0, 5, 10 and 15%.

5(c).20 Superimposed Variation between weights and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with admixtures of 0, 5, 10 and 15%.

5(c).21 Superimposed Variation between weights and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with admixtures of 0, 5, 10 and 15%.

5(c).22 Superimposed Variation between weights and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with admixtures of 0, 5, 10 and 15%.

5(c).23 Superimposed Variation between weights and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing
with admixtures of 0, 5, 10 and 15%.

5(c).24 Superimposed Variation between weights and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with admixtures of 0, 5, 10 and 15%.

5(c).25 Superimposed Variation between weights and Percentage of Metakaoline aggregate replacing natural aggregate for 28 days curing with admixtures of 0, 5, 10 and 15%.

5(c).26 Superimposed Variation between weights and Percentage of Metakaoline aggregate replacing natural aggregate for 90 days curing with admixtures of 0, 5, 10 and 15%.

5(d).1 Shows the morphology of the structure of specimen at magnification at 1.00kx for M-0 mix at 28 days of curing

5(d).2 Shows the morphology of the structure of specimen at magnification at 2.00kx M-25 mix at 28 days of curing

5(d).3 Shows the morphology of the structure of specimen at magnification at 5.00kx M-25 mix at 90 days of curing

5(d).4 Shows the morphology of the structure of specimen at magnification at 500x M-50 mix at 28 days of curing

5(d).5 Shows the morphology of the structure of specimen at magnification at 1.00kx M-50 mix at 90 days of curing

5(d).6 Shows the morphology of the structure of specimen at magnification at 5.00kx M-75 mix at 28 days of curing

5(d).7 Shows the morphology of the structure of specimen at magnification at 500x M-75 mix at 90 days of curing

5(d).8 Shows the morphology of the structure of specimen at magnification at 1.00kx M-100 mix at 28 days of curing

5(d).9 Shows the morphology of the structure of specimen at magnification at 5.00kx M-100 mix at 90 days of curing

5(d).10 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-0 mix for 28 days curing period. (peak list)
5(d).11 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-0 mix for 28 days curing period.

5(d).12 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-25 mix for 28 days curing period. (peak list)

5(d).13 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-25 mix for 28 days curing period.

5(d).14 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-25 mix for 90 days curing period. (peak list)

5(d).15 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-25 mix for 90 days curing period.

5(d).16 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-50 mix for 28 days curing period. (peak list)

5(d).17 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-50 mix for 28 days curing period.

5(d).18 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-50 mix for 90 days curing period. (peak list)

5(d).19 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-50 mix for 90 days curing period.

5(d).20 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-75 mix for 28 days curing period. (peak list)

5(d).21 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-75 mix for 28 days curing period.

5(d).22 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-75 mix for 90 days curing period. (peak list)

5(d).23 Using X’Pert High score soft ware from mineral group data matched
by chemical compounds of M-75 mix for 90 days curing period.

5(d).24 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-100 mix for 28 days curing period. (peak list)

5(d).25 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-100 mix for 28 days curing period.

5(d).26 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-100 mix for 90 days curing period. (peak list)

5(d).27 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of M-100 mix for 90 days curing period.

6(a).1 Superimposed Variation between density and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).2 Superimposed Variation between Cube compressive strength and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).3 Superimposed Variation between Cylinder compressive strength and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).4 Superimposed Variation between Split tensile strength and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).5 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.30 and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).6 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.40 and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).7 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.50 and Percentage of Silica fume aggregate
replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).8 Superimposed Variation between Ultimate Load in Mode-II of DCN specimens with a/w = 0.60 and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).9 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.30 and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).10 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.40 and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).11 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.50 and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).12 Superimposed Variation between in-plane shear strength in Mode-II of DCN specimens with a/w = 0.60 and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).13 Superimposed Variation between young’s modulus based on I.S.Code formula and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).14 Superimposed Variation between young’s modulus based on empherical formula and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).15 Superimposed Variation between flexural strength based on empherical formula and Percentage of Silica fume aggregate replacing natural aggregate for 28, 90, 180 and 365 days curing.

6(a).16 Superimposed Variation between flexural strength based on I.S.Code formula and Percentage of Silica fume aggregate replacing natural
aggregate for 28, 90, 180 and 365 days curing.

6(a).17 Variations between strain energy stored in beams and percentage of Silica fume aggregate.

6(b).1 Shows the morphology of the structure of specimen at magnification at 1.00kx for S-0 mix at 28 days of curing

6(b).2 Shows the morphology of the structure of specimen at magnification at 2.00kx S-25 mix at 28 days of curing

6(b).3 Shows the morphology of the structure of specimen at magnification at 5.00kx S-25 mix at 90 days of curing

6(b).4 Shows the morphology of the structure of specimen at magnification at 500x S-50 mix at 28 days of curing

6(b).5 Shows the morphology of the structure of specimen at magnification at 1.00kx S-50 mix at 90 days of curing

6(b).6 Shows the morphology of the structure of specimen at magnification at 5.00kx S-75 mix at 28 days of curing

6(b).7 Shows the morphology of the structure of specimen at magnification at 500x S-75 mix at 90 days of curing

6(b).8 Shows the morphology of the structure of specimen at magnification at 1.00kx S-100 mix at 28 days of curing

6(b).9 Shows the morphology of the structure of specimen at magnification at 5.00kx S-100 mix at 90 days of curing

6(b).10 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-0 mix for 28 days curing period. (peak list)

6(b).11 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-0 mix for 28 days curing period.

6(b).12 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-25 mix for 28 days curing period. (peak list)

6(b).13 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-25 mix for 28 days curing period.
6(b).14 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-25 mix for 90 days curing period. (peak list)

6(b).15 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-25 mix for 90 days curing period.

6(b).16 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-50 mix for 28 days curing period. (peak list)

6(b).17 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-50 mix for 28 days curing period.

6(b).18 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-50 mix for 90 days curing period. (peak list)

6(b).19 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-50 mix for 90 days curing period.

6(b).20 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-75 mix for 28 days curing period. (peak list)

6(b).21 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-75 mix for 28 days curing period.

6(b).22 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-75 mix for 90 days curing period. (peak list)

6(b).23 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-75 mix for 90 days curing period.

6(b).24 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-100 mix for 28 days curing period. (peak list)

6(b).25 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-100 mix for 28 days curing period.

6(b).26 Using X’Pert High score soft ware from mineral group data matched
by chemical compounds of S-100 mix for 90 days curing period. (peak list)

6(b).27 Using X’Pert High score soft ware from mineral group data matched by chemical compounds of S-100 mix for 90 days curing period.

6(b).28 Comparison of density of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).29 Comparison of density of ‘50% replacement of cold bonded pelletized aggregate +50%’ conventional aggregate concrete with conventional concrete

6(b).30 Comparison of density of ‘75% replacement of cold bonded pelletized aggregate +25%’ conventional aggregate concrete with conventional concrete

6(b).31 Comparison of density of ‘100% replacement of cold bonded pelletized aggregate concrete with conventional concrete

6(b).32 Comparison of cube compressive strength of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).33 Comparison of cube compressive strength of ‘50% replacement of cold bonded pelletized aggregate +50%’ conventional aggregate concrete with conventional concrete

6(b).34 Comparison of cube compressive strength of ‘75% replacement of cold bonded pelletized aggregate +25%’ conventional aggregate concrete with conventional concrete

6(b).35 Comparison of cube compressive strength of ‘100% replacement of cold bonded pelletized aggregate concrete with conventional concrete

6(b).36 Comparison of cylinder compressive strength of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).37 Comparison of cylinder compressive strength of ‘50% replacement of cold bonded pelletized aggregate +50%’ conventional aggregate concrete
concrete with conventional concrete

6(b).38 Comparison of cylinder compressive strength of ‘75% replacement of cold bonded pelletized aggregate +25%’ conventional aggregate concrete with conventional concrete

6(b).39 Comparison of cylinder compressive strength of ‘100% replacement of cold bonded pelletized aggregate concrete with conventional concrete

6(b).40 Comparison of split tensile strength of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).41 Comparison of split tensile strength of ‘50% replacement of cold bonded pelletized aggregate +50%’ conventional aggregate concrete with conventional concrete

6(b).42 Comparison of split tensile strength of ‘75% replacement of cold bonded pelletized aggregate +25%’ conventional aggregate concrete with conventional concrete

6(b).43 Comparison of split tensile strength of ‘100% replacement of cold bonded pelletized aggregate concrete with conventional concrete

6(b).44 Comparison of ultimate load (a/w=0.30) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).45 Comparison of ultimate load (a/w=0.30) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).46 Comparison of ultimate load (a/w=0.30) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).47 Comparison of ultimate load (a/w=0.30) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).48 Comparison of ultimate load (a/w=0.40) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete
with conventional concrete

6(b).49 Comparison of ultimate load (a/w=0.40) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).50 Comparison of ultimate load (a/w=0.40) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).51 Comparison of ultimate load (a/w=0.40) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).52 Comparison of ultimate load (a/w=0.50) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).53 Comparison of ultimate load (a/w=0.50) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).54 Comparison of ultimate load (a/w=0.50) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).55 Comparison of ultimate load (a/w=0.50) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).56 Comparison of ultimate load (a/w=0.60) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).57 Comparison of ultimate load (a/w=0.60) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).58 Comparison of ultimate load (a/w=0.60) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete
6(b).59 Comparison of ultimate load (a/w=0.60) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).60 Comparison of in-plane shear strength (a/w=0.30) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).61 Comparison of in-plane shear strength (a/w=0.30) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).62 Comparison of in-plane shear strength (a/w=0.30) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).63 Comparison of in-plane shear strength (a/w=0.30) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).64 Comparison of in-plane shear strength (a/w=0.40) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).65 Comparison of in-plane shear strength (a/w=0.40) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).66 Comparison of in-plane shear strength (a/w=0.40) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).67 Comparison of in-plane shear strength (a/w=0.40) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).68 Comparison of in-plane shear strength (a/w=0.50) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).69 Comparison of in-plane shear strength (a/w=0.50) of ‘25% replacement...
of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).70 Comparison of in-plane shear strength (a/w=0.50) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete 399

6(b).71 Comparison of in-plane shear strength (a/w=0.50) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete 399

6(b).72 Comparison of in-plane shear strength (a/w=0.60) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete 399

6(b).73 Comparison of in-plane shear strength (a/w=0.60) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete 399

6(b).74 Comparison of in-plane shear strength (a/w=0.60) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete 399

6(b).75 Comparison of in-plane shear strength (a/w=0.60) of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete 399

6(b).76 Comparison of flexural strength of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete 400

6(b).77 Comparison of flexural strength of ‘50% replacement of cold bonded pelletized aggregate +50%’ conventional aggregate concrete with conventional concrete 400

6(b).78 Comparison of flexural strength of ‘75% replacement of cold bonded pelletized aggregate +25%’ conventional aggregate concrete with conventional concrete 400

6(b).79 Comparison of flexural strength of ‘100% replacement of cold bonded pelletized aggregate concrete with conventional concrete 400
6(b).80 Comparison of flexural strength of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).81 Comparison of flexural strength of ‘50% replacement of cold bonded pelletized aggregate +50%’ conventional aggregate concrete with conventional concrete

6(b).82 Comparison of flexural strength of ‘75% replacement of cold bonded pelletized aggregate +25%’ conventional aggregate concrete with conventional concrete

6(b).83 Comparison of flexural strength of ‘100% replacement of cold bonded pelletized aggregate concrete with conventional concrete

6(b).84 Comparison of young’s modulus of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).85 Comparison of young’s modulus of ‘50% replacement of cold bonded pelletized aggregate +50%’ conventional aggregate concrete with conventional concrete

6(b).86 Comparison of young’s modulus of ‘75% replacement of cold bonded pelletized aggregate +25%’ conventional aggregate concrete with conventional concrete

6(b).87 Comparison of young’s modulus of ‘100% replacement of cold bonded pelletized aggregate concrete with conventional concrete

6(b).88 Comparison of young’s modulus of ‘25% replacement of cold bonded pelletized aggregate +75%’ conventional aggregate concrete with conventional concrete

6(b).89 Comparison of young’s modulus of ‘50% replacement of cold bonded pelletized aggregate +50%’ conventional aggregate concrete with conventional concrete

6(b).90 Comparison of young’s modulus of ‘75% replacement of cold bonded pelletized aggregate +25%’ conventional aggregate concrete with conventional concrete
Comparison of young’s modulus of ‘100% replacement of cold bonded pelletized aggregate concrete with conventional concrete
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Name of the plate</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Pelletization machine (Drum type pelletizer)</td>
<td>3</td>
</tr>
<tr>
<td>3.1</td>
<td>Cement</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Lime</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Fly ash</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Metakaoline</td>
<td>24</td>
</tr>
<tr>
<td>3.5</td>
<td>Silica fume</td>
<td>25</td>
</tr>
<tr>
<td>3.6</td>
<td>Fine aggregate (River sand)</td>
<td>25</td>
</tr>
<tr>
<td>3.7</td>
<td>Conventional coarse aggregate</td>
<td>25</td>
</tr>
<tr>
<td>3.8</td>
<td>Manufactured pellets in green state</td>
<td>25</td>
</tr>
<tr>
<td>3.9</td>
<td>Pelletized cold bonded fly ash aggregate</td>
<td>25</td>
</tr>
<tr>
<td>3.10</td>
<td>Pelletized cold bonded Metakaoline aggregate</td>
<td>25</td>
</tr>
<tr>
<td>3.11</td>
<td>Pelletized cold bonded Silica fume aggregate</td>
<td>26</td>
</tr>
<tr>
<td>3.12</td>
<td>Potable water</td>
<td>26</td>
</tr>
<tr>
<td>3.13</td>
<td>Steel fibers</td>
<td>26</td>
</tr>
<tr>
<td>3.14</td>
<td>Hydrochloric acid (Hcl)</td>
<td>26</td>
</tr>
<tr>
<td>3.15</td>
<td>Sulfuric acid (H₂SO₄)</td>
<td>26</td>
</tr>
<tr>
<td>3.16</td>
<td>Sodium sulphate (Na₂So₄)</td>
<td>26</td>
</tr>
<tr>
<td>4(a).1</td>
<td>Mixing of light weight aggregate concrete</td>
<td>60</td>
</tr>
<tr>
<td>4(a).2</td>
<td>Apply of waste oil for easy de-moulding of specimens</td>
<td>60</td>
</tr>
<tr>
<td>4(a).3</td>
<td>Empty cubes</td>
<td>60</td>
</tr>
<tr>
<td>4(a).4</td>
<td>Empty Cylinders</td>
<td>60</td>
</tr>
<tr>
<td>4(a).5</td>
<td>Empty Beams</td>
<td>60</td>
</tr>
<tr>
<td>4(a).6</td>
<td>Casting of cubes</td>
<td>60</td>
</tr>
<tr>
<td>4(a).7</td>
<td>Casting of cylinders</td>
<td>60</td>
</tr>
<tr>
<td>4(a).8</td>
<td>Casting of beam specimens</td>
<td>60</td>
</tr>
<tr>
<td>4(a).9</td>
<td>Empty DCN specimens for Mode-II shear</td>
<td>61</td>
</tr>
<tr>
<td>4(a).10</td>
<td>Casting of DCN (Mode-II shear) specimens</td>
<td>61</td>
</tr>
<tr>
<td>4(a).11</td>
<td>View shows the specimens in curing pond</td>
<td>61</td>
</tr>
</tbody>
</table>
4(a).12 Specimens identification for testing
4(a).13 Specimens identified for testing
4(a).14 Test set up of cube compressive strength
4(a).15 Crack pattern of cube
4(a).16 Test set of cylinder compressive strength
4(a).17 Crack pattern of cylinder
4(a).18 Split tensile strength test set up
4(a).19 Crack pattern of cylinder for Split tensile strength
4(a).20 Flexural strength of beams test set up
4(a).21 Crack pattern of beams after Flexural strength test
 In-Plane shear strength (Mode-II Shear) of DCN specimens test set up
4(a).22 Crack pattern of DCN specimens
4(a).23 Crack patterns of all tested specimens
4(a).24 Crack patterns of tested specimens
4(a).25 Crack patterns of tested DCN specimens
4(a).26 Crack patterns of tested specimens of beams
LIST OF SYMBOLS ABBREVIATIONS

<table>
<thead>
<tr>
<th>Greek symbols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>b (or) w</td>
<td>breadth or width of specimen</td>
</tr>
<tr>
<td>D</td>
<td>Overall depth</td>
</tr>
<tr>
<td>E_c</td>
<td>Modulus of elasticity of concrete</td>
</tr>
<tr>
<td>E_s</td>
<td>Modulus of elasticity of steel</td>
</tr>
<tr>
<td>f_{ck}</td>
<td>Characteristic cube compressive strength in N/mm²</td>
</tr>
<tr>
<td>f_d</td>
<td>Design strength</td>
</tr>
<tr>
<td>l</td>
<td>Length of the specimen</td>
</tr>
<tr>
<td>n</td>
<td>No of samples</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
</tr>
<tr>
<td>v</td>
<td>Shear force</td>
</tr>
<tr>
<td>W</td>
<td>Total load</td>
</tr>
<tr>
<td>Φ</td>
<td>Diameter of specimen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCN</td>
<td>Double Centered Notch</td>
</tr>
<tr>
<td>F</td>
<td>Fly ash</td>
</tr>
<tr>
<td>FA</td>
<td>Cold bonded pelletized Fly ash aggregate</td>
</tr>
<tr>
<td>M</td>
<td>Metakaoline</td>
</tr>
<tr>
<td>MA</td>
<td>Cold bonded pelletized Metakaoline aggregate</td>
</tr>
<tr>
<td>SF</td>
<td>Silica fume</td>
</tr>
<tr>
<td>SA</td>
<td>Cold bonded pelletized Silica fume aggregate</td>
</tr>
<tr>
<td>CA</td>
<td>Conventional coarse aggregate (natural aggregate)</td>
</tr>
<tr>
<td>H_2SO_4</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>Hcl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>Na$_2$SO$_4$</td>
<td>Sodium sulfacte</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium Oxide (Lime)</td>
</tr>
<tr>
<td>CC</td>
<td>Cement Concrete</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>kw</td>
<td>Kilowatts</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascal’s</td>
</tr>
<tr>
<td>MT</td>
<td>Metric Tons</td>
</tr>
<tr>
<td>N/mm²</td>
<td>Newton per sq.mm</td>
</tr>
<tr>
<td>Rs</td>
<td>Rupees</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>