CHAPTER 3
SEPARATION AXIOMS

The concept of fuzzy normal spaces was introduced by Bruce Hutton [18]. Tomasz Kubiak [66] established many interesting properties of fuzzy normal spaces. The concept of fuzzy regular spaces was introduced by Hutton and Reilly [32]. Separation axioms such as fuzzy pairwise T_j ($j = 0, 1, 2, 3, 4$) spaces were studied by Ramadan, Abbas and Abd El-Latif [52]. In this chapter, fuzzy $\tilde{g} \cdot T_i$ ($i = 0, 1, 2, \frac{1}{2}$) spaces, fuzzy \tilde{g}-normality and fuzzy \tilde{g}-regularity are introduced in the sense of Sostak [60-62] and Ramadan [50-52]. Also, many interesting characterizations are established.
3.1 FUZZY \tilde{g}-T_i SPACES

In this section, the concept of fuzzy \tilde{g}-T_i ($i = 0, 1, 2, \frac{1}{2}$) spaces is introduced. Interesting properties and characterizations of such spaces are discussed.

Definition 3.1.1 Let (X, T) be a smooth fuzzy topological space. For any $\lambda, \mu \in I^X$ and $r \in I_0$, λ is called

(1) r-fuzzy \hat{g}-closed if $C_T(\lambda, r) \leq \mu$ whenever $\lambda \leq \mu$ and μ is r-fuzzy semi-open. The complement of an r-fuzzy \hat{g}-closed set is said to be an r-fuzzy \hat{g}-open set.

(2) r-fuzzy $*g$-closed if $C_T(\lambda, r) \leq \mu$ whenever $\lambda \leq \mu$ and μ is r-fuzzy \hat{g}-open. The complement of an r-fuzzy $*g$-closed set is said to be an r-fuzzy $*g$-open set.

(3) r-fuzzy g-semi-closed (briefly, r-fgs-closed) if $SC_T(\lambda, r) \leq \mu$ whenever $\lambda \leq \mu$ and μ is r-fuzzy g-open. The complement of an r-fuzzy g-semi-closed set is said to be an r-fuzzy g-semi-open set (briefly, r-fgs-open set).

(4) r-fuzzy \check{g}-closed if $C_T(\lambda, r) \leq \mu$ whenever $\lambda \leq \mu$ and μ is r-fgs-open. The complement of an r-fuzzy \check{g}-closed set is said to be an r-fuzzy \check{g}-open set.

Definition 3.1.2 Let (X, T) be a smooth fuzzy topological space. For any $\lambda \in I^X$ and $r \in I_0$,

50
(1) \(\tilde{g}^{-1}_T (\lambda, r) = \lor \{ \mu \in I^X : \mu \leq \lambda, \mu \) is an r-fuzzy \(\tilde{g} \)-open set } is called the r-fuzzy \(\tilde{g} \)-interior of \(\lambda \).

(2) \(\tilde{g}^{-1}_C (\lambda, r) = \land \{ \mu \in I^X : \mu \geq \lambda, \mu \) is an r-fuzzy \(\tilde{g} \)-closed set } is called the r-fuzzy \(\tilde{g} \)-closure of \(\lambda \).

Definition 3.1.3 Let \((X, T)\) be a smooth fuzzy topological space. For any \(\lambda \in I^X \) and \(r \in I_0 \), \(\lambda \) is called r-generalized fuzzy \(\tilde{g} \)-closed (briefly, \(r\)-gf\(\tilde{g} \)-closed) iff \(\tilde{g}^{-1}_C (\lambda, r) \leq \mu \) whenever \(\lambda \leq \mu \), \(\mu \in I^X \) is r-fuzzy \(\tilde{g} \)-open. The complement of an r-generalized fuzzy \(\tilde{g} \)-closed set is r-generalized fuzzy \(\tilde{g} \)-open (briefly, r-gf\(\tilde{g} \)-open).

Definition 3.1.4 Let \((X, T)\) and \((Y, S)\) be any two smooth fuzzy topological spaces. For \(r \in I_0 \), let \(f : (X, T) \to (Y, S) \) be a function.

(1) \(f \) is called fuzzy \(\tilde{g} \)-open (resp. fuzzy \(\tilde{g} \)-closed) if for each r-fuzzy \(\tilde{g} \)-open set \(\lambda \in I^X \), \(f (\lambda) \in I^Y \) is r-fuzzy \(\tilde{g} \)-open (resp. r-fuzzy \(\tilde{g} \)-closed).

(2) \(f \) is called fuzzy \(\tilde{g} \)-continuous if for each \(\lambda \in I^Y \) with \(S (\lambda) \geq r \), \(f^\diamond (\lambda) \in I^X \) is r-fuzzy \(\tilde{g} \)-open.

(3) \(f \) is called fuzzy \(\tilde{g} \)-irresolute if for each r-fuzzy \(\tilde{g} \)-open set \(\lambda \in I^Y \), \(f^\diamond (\lambda) \in I^X \) is r-fuzzy \(\tilde{g} \)-open.

(4) \(f \) is called fuzzy \(\tilde{g} \)-homeomorphism if \(f \) is one to one, onto, fuzzy \(\tilde{g} \)-irresolute and fuzzy \(\tilde{g} \)-open.
(5) \(f \) is called \(gfg \)-irresolute if for each \(r-gfg \) closed set \(\lambda \in \mathbf{I}^\gamma \), \(f^{-1}(\lambda) \in \mathbf{I}^X \) is \(r-gfg \)-closed.

(6) \(f \) is called \(gfg \)-closed iff for any \(r-gfg \)-closed set \(\lambda \in \mathbf{I}^X \), \(f(\lambda) \in \mathbf{I}^\gamma \) is \(r-gfg \)-closed.

Definition 3.1.5 For \(r \in \mathbf{I}_0 \), a smooth fuzzy topological space \((\mathbf{X}, T) \) is called

1. fuzzy \(g \)-\(T_1 \) iff for \(\lambda, \mu \in \mathbf{I}^X \) with \(\lambda \not\subset \mu \), there exist r-fuzzy \(g \)-open sets \(\delta, \eta \in \mathbf{I}^X \) such that either \(\lambda \leq \delta \), \(\mu \not\subset \delta \) or \(\mu \leq \eta \), \(\lambda \not\subset \eta \).

2. fuzzy \(g \)-\(T_2 \) iff for \(\lambda, \mu \in \mathbf{I}^X \) with \(\lambda \not\subset \mu \), there exist r-fuzzy \(g \)-open sets \(\delta, \eta \in \mathbf{I}^X \) with \(\lambda \leq \delta \), \(\mu \leq \eta \) and \(\delta \not\subset \eta \).

Definition 3.1.6 A smooth fuzzy topological space \((\mathbf{X}, T) \) is called fuzzy \(g \)-\(T_{1/2} \) if every \(r-gfg \)-closed set is \(r \)-fuzzy \(g \)-closed, \(r \in \mathbf{I}_0 \).

Proposition 3.1.1 Let \((\mathbf{X}, T) \) be a smooth fuzzy topological space. For \(r \in \mathbf{I}_0 \), the following properties hold:

(a) For all \(r \)-fuzzy \(g \)-open set \(\lambda \in \mathbf{I}^X \), \(\lambda \not\subset \mu \) iff \(\lambda \not\subset \mathbf{C}_T(\mu, r) \), \(\mu \in \mathbf{I}^X \).

(b) \(\delta \not\subset \mathbf{C}_T(\lambda, r) \) iff \(\lambda \not\subset \mu \) for all \(r \)-fuzzy \(g \)-open sets \(\mu \in \mathbf{I}^X \) with \(\delta \leq \mu \), where \(\lambda, \delta \in \mathbf{I}^X \).

Proof: (a). Let \(\lambda \) be an \(r \)-fuzzy \(g \)-open set such that \(\lambda \not\subset \mu \). Since \(\mu > \mathbf{1} - \lambda \), \(\lambda \not\subset \mathbf{C}_T(\mu, r) \). Conversely, let \(\lambda \) be an \(r \)-fuzzy \(g \)-open set such that \(\lambda \not\subset \mu \). Then \(\mu \leq \mathbf{1} - \lambda \), this implies that
\[\tilde{g} - C_T (\mu, r) \leq \tilde{g} - C_T (\bar{1} - \lambda, r) = \bar{1} - \lambda. \]

Now, \(\tilde{g} - C_T (\mu, r) \leq \bar{1} - \lambda. \) Thus, \(\lambda \not\Subset \tilde{g} - C_T (\mu, r) \) which is a contradiction. Hence the result.

(b). Let \(\delta \ q (\tilde{g} - C_T (\lambda, r)). \) Since \(\delta \leq \mu, \mu \ q (\tilde{g} - C_T (\lambda, r)). \) By (a), \(\mu \ q \lambda \) for all \(r \)-fuzzy \(\tilde{g} \)-open sets \(\mu \) with \(\delta \leq \mu. \) Conversely, suppose that \(\delta \not\Subset \tilde{g} - C_T (\lambda, r). \) Then, \(\delta \leq \bar{1} - (\tilde{g} - C_T (\lambda, r)). \)

Now, \(\mu = \bar{1} - (\tilde{g} - C_T (\mu, r)). \) Then \(\mu \) is an \(r \)-fuzzy \(\tilde{g} \)-open set.

Since \(\lambda \leq \tilde{g} - C_T (\lambda, r), \mu = \bar{1} - (\tilde{g} - C_T (\lambda, r)) \leq \bar{1} - \lambda, \) this implies that \(\lambda \not\Subset \mu, \) a contradiction. This proves the result.

Proposition 3.1.2 Let \((X, T) \) and \((Y, S) \) be any two smooth fuzzy topological spaces. For \(r \in I_0, \) let \(f : (X, T) \rightarrow (Y, S) \) be a fuzzy \(\tilde{g} \)-irresolute, \(gf\tilde{g} \)-irresolute, and \(\tilde{g} \)-closed function. Then the following conditions hold:

(a) If \(f \) is injective and \((Y, S) \) is a fuzzy \(\tilde{g} - T_{1/2} \) space, then \((X, T) \) is a fuzzy \(\tilde{g} - T_{1/2} \) space.

(b) If \(f \) is surjective and \((X, T) \) is a fuzzy \(\tilde{g} - T_{1/2} \) space, then \((Y, S) \) is a fuzzy \(\tilde{g} - T_{1/2} \) space.

Proof: (a). Let \(\lambda \in I^X \) be an \(r \)-gf\(\tilde{g} \)-closed set. Since \(f \) is \(gf\tilde{g} \)-closed, \(f (\lambda) \in I^Y \) is \(r \)-gf\(\tilde{g} \)-closed. Since \((Y, S) \) is fuzzy \(\tilde{g} - T_{1/2}, \) \(f (\lambda) \) is \(r \)-fuzzy \(\tilde{g} \)-closed. Now, \(\lambda = f^* (f (\lambda)) \) is \(r \)-fuzzy \(\tilde{g} \)-closed. Hence \((X, T) \) is a fuzzy \(\tilde{g} - T_{1/2} \) space.

53
(b). Let \(\mu \in I^Y \) be an \(r\)-\(gf\tilde{g}\)-closed set. Since \(f \) is \(gf\tilde{g}\)-irresolute, \(f^- (\mu) \in I^X \) is an \(r\)-\(gf\tilde{g}\)-closed set. Since \((X, T)\) is a fuzzy \(\tilde{g}\)-\(T_{1/2}\) space, \(f^- (\mu) \) is an \(r\)-fuzzy \(\tilde{g}\)-closed set. Therefore, \(\mu = f (f^- (\mu)) \) is \(r\)-fuzzy \(\tilde{g}\)-closed. Hence \((Y, S)\) is a fuzzy \(\tilde{g}\)-\(T_{1/2}\) space.

Proposition 3.1.3 Let \((X, T)\) and \((Y, S)\) be any two smooth fuzzy topological spaces. Let \(f : (X, T) \to (Y, S) \) be a fuzzy \(\tilde{g}\)-irresolute, and injective function. If \((Y, S)\) is fuzzy \(\tilde{g}\)-\(T_2\) (resp. fuzzy \(\tilde{g}\)-\(T_1\)), then \((X, T)\) is fuzzy \(\tilde{g}\)-\(T_2\) (resp. fuzzy \(\tilde{g}\)-\(T_1\)), \(r \in I_0\).

Proof: Let \(\lambda_1, \lambda_2 \in I^Y \) be such that \(\lambda_1 \notin \lambda_2 \). Since \(f \) is injective, \(f (\lambda_1) \notin f (\lambda_2) \). Since \((Y, S)\) is a fuzzy \(\tilde{g}\)-\(T_2\) space, there exist \(r\)-fuzzy \(\tilde{g}\)-open sets \(\lambda, \mu \in I^Y \) such that \(f (\lambda_1) \leq \lambda \) and \(f (\lambda_2) \leq \mu \) such that \(\lambda \notin \mu \). That is, \(\lambda \leq \bar{1} - \mu \) which implies that \(f^- (\lambda) \notin f^- (\mu) \).

Now, \(\lambda_1 \leq f^- (\lambda) \) and \(\lambda_2 \leq f^- (\mu) \). Since \(f \) is fuzzy \(\tilde{g}\)-irresolute, \(f^- (\lambda), f^- (\mu) \in I^X \) are \(r\)-fuzzy \(\tilde{g}\)-open sets. Hence \((X, T)\) is a fuzzy \(\tilde{g}\)-\(T_2\) space. Similarly we prove the case of fuzzy \(\tilde{g}\)-\(T_1\) space.

3.2 Fuzzy \(\tilde{g}\)-Normal Spaces and Its Characterizations

In this section, the concept of fuzzy \(\tilde{g}\)-normal spaces is introduced. Interesting properties and characterizations of such spaces are discussed.

Definition 3.2.1 A smooth fuzzy topological space \((X, T)\) is said to be fuzzy \(\tilde{g}\)-normal if for every \(r\)-fuzzy \(\tilde{g}\)-closed set \(\lambda \in I^X \) and \(r\)-fuzzy
\(\tilde{g} \)-open set \(\mu \in \tilde{I}^X \) with \(\lambda \leq \mu \), there exists a \(\gamma \in \tilde{I}^X \) such that
\[\lambda \leq \tilde{g} \cdot I_T (\gamma, r) \leq \tilde{g} \cdot C_T (\gamma, r) \leq \mu, \ r \in I_0. \]

Proposition 3.2.1 For any smooth fuzzy topological space \((X, T) \) and \(\lambda, \mu, \delta \in \tilde{I}^X, r \in I_0 \), the following statements are equivalent:

(a) \((X, T) \) is fuzzy \(\tilde{g} \)-normal.

(b) For each \(r \)-fuzzy \(\tilde{g} \)-closed set \(\lambda \) and each \(r \)-fuzzy \(\tilde{g} \)-open set \(\mu \) with \(\lambda \leq \mu \), there exists an \(r \)-fuzzy \(\tilde{g} \)-open set \(\delta \) such that
\[\tilde{g} \cdot C_T (\lambda, r) \leq \delta \leq \tilde{g} \cdot C_T (\delta, r) \leq \mu. \]

(c) For each \(r \)-gf\(\tilde{g} \)-closed set \(\lambda \) and \(r \)-fuzzy \(\tilde{g} \)-open set \(\mu \) with \(\lambda \leq \mu \), there exists an \(r \)-fuzzy \(\tilde{g} \)-open set \(\delta \) such that
\[\tilde{g} \cdot C_T (\lambda, r) \leq \delta \leq \tilde{g} \cdot C_T (\delta, r) \leq \mu. \]

Proof: (a) \(\Rightarrow \) (b). The proof is trivial.

(b) \(\Rightarrow \) (c). Let \(\lambda \) be any \(r \)-gf\(\tilde{g} \)-closed set and \(\mu \) be any \(r \)-fuzzy \(\tilde{g} \)-open set such that \(\lambda \leq \mu \). Since \(\lambda \) is \(r \)-gf\(\tilde{g} \)-closed, \(\tilde{g} \cdot C_T (\lambda, r) \leq \mu \). Now, \(\tilde{g} \cdot C_T (\lambda, r) \) is \(r \)-fuzzy \(\tilde{g} \)-closed and \(\mu \) is \(r \)-fuzzy \(\tilde{g} \)-open. By (b), there exists an \(r \)-fuzzy \(\tilde{g} \)-open set \(\delta \) such that
\[\tilde{g} \cdot C_T (\lambda, r) \leq \delta \leq \tilde{g} \cdot C_T (\delta, r) \leq \mu. \]

(c) \(\Rightarrow \) (a). The proof is trivial.

Proposition 3.2.2 Let \((X, T) \) and \((Y, S) \) be any two smooth fuzzy topological spaces. If \(f : (X, T) \rightarrow (Y, S) \) is fuzzy \(\tilde{g} \)-homeomorphism and \((Y, S) \) is fuzzy \(\tilde{g} \)-normal, then \((X, T) \) is fuzzy \(\tilde{g} \)-normal.
Proof: Let $\lambda \in \mathcal{I}^X$ be any r-fuzzy \tilde{g}-closed set and $\mu \in \mathcal{I}^X$ be any r-fuzzy \tilde{g}-open set such that $\lambda \leq \mu$ where $r \in I_0$. Since f is fuzzy \tilde{g}-homeomorphism, it is also fuzzy \tilde{g}-closed. Hence $f(\lambda) \in \mathcal{I}^Y$ is r-fuzzy \tilde{g}-closed. Since f is fuzzy \tilde{g}-open, $f(\mu) \in \mathcal{I}^Y$ is r-fuzzy \tilde{g}-open.

Since (Y, S) is fuzzy \tilde{g}-normal, there exists a $\gamma \in \mathcal{I}^Y$ such that

$$f(\gamma) \leq \tilde{g} - \mathcal{I}_T(\gamma, r) \leq \tilde{g} - \mathcal{C}_T(\gamma, r) \leq f(\mu).$$

Now,

$$f^{-1}(f(\lambda)) = \lambda \leq f^{-1}(\tilde{g} - \mathcal{I}_T(\gamma, r)) \leq f^{-1}(\tilde{g} - \mathcal{C}_T(\gamma, r)) \leq f^{-1}(f(\mu)) = \mu.$$

That is, $\lambda \leq \tilde{g} - \mathcal{I}_T(f^{-1}(\gamma), r) \leq \tilde{g} - \mathcal{C}_T(f^{-1}(\gamma), r) \leq \mu$. Therefore (X, T) is fuzzy \tilde{g}-normal.

Proposition 3.2.3 Let (X, T) and (Y, S) be any two smooth fuzzy topological spaces. If $f: (X, T) \rightarrow (Y, S)$ is fuzzy \tilde{g}-homeomorphism and (X, T) is a fuzzy \tilde{g}-normal space, then (Y, S) is fuzzy \tilde{g}-normal.

Proof: Let $\lambda \in \mathcal{I}^Y$ be any r-fuzzy \tilde{g}-closed set and $\mu \in \mathcal{I}^Y$ be any r-fuzzy \tilde{g}-open set such that $\lambda \leq \mu$ where $r \in I_0$. Since f is fuzzy \tilde{g}-irresolute, $f^{-1}(\lambda) \in \mathcal{I}^X$ is r-fuzzy \tilde{g}-closed and $f^{-1}(\mu) \in \mathcal{I}^X$ is r-fuzzy \tilde{g}-open.

Since (X, T) is fuzzy \tilde{g}-normal, there exists a $\gamma \in \mathcal{I}^X$ such that

$$f^{-1}(\lambda) \leq \tilde{g} - \mathcal{I}_T(\gamma, r) \leq \tilde{g} - \mathcal{C}_T(\gamma, r) \leq f^{-1}(\mu).$$

Now,

$$f\left(f^{-1}(\lambda)\right) = \lambda \leq f\left(\tilde{g} - \mathcal{I}_T(\gamma, r)\right) \leq f\left(\tilde{g} - \mathcal{C}_T(\gamma, r)\right) \leq f\left(f^{-1}(\mu)\right) = \mu.$$

That is, $\lambda \leq \tilde{g} - \mathcal{I}_T(f(\gamma), r) \leq \tilde{g} - \mathcal{C}_T(f(\gamma), r) \leq \mu$. Therefore (Y, S) is fuzzy \tilde{g}-normal.
Proposition 3.2.4 Let \((X, T)\) be a fuzzy \(\tilde{g}\)-normal space. Let
\[
\{\lambda_i\}_{i \in J} \subseteq I_X^\mathbb{R} \quad \text{and} \quad \{\mu_j\}_{j \in J} \subseteq I_X^\mathbb{R}, \quad r \in I_0.
\]
If there exist \(\lambda, \mu \in I_X^\mathbb{R}\) such that
\[
\tilde{g} - C_T (\lambda_i, r) \leq \tilde{g} - C_T (\lambda, r) \leq \tilde{g} - I_T (\mu_j, r)
\]
and
\[
\tilde{g} - C_T (\lambda_i, r) \leq \tilde{g} - I_T (\mu, r) \leq \tilde{g} - I_T (\mu_j, r)
\]
for all \(i, j = 1, 2, \ldots\)
and \(r \in I_0\), then there exists a \(\gamma \in I_X^\mathbb{R}\) such that
\[
\tilde{g} - C_T (\lambda_i, r) \leq \tilde{g} - I_T (\gamma, r) \leq \tilde{g} - C_T (\gamma, r) \leq \tilde{g} - I_T (\mu_j, r)
\]
for all \(i, j = 1, 2, \ldots\)

Proof: First, we shall show by induction that for all \(n \geq 2\) there exists a collection \(\{\gamma_i, \delta_i / 1 \leq i \leq n\}\) contained in \(I_X^\mathbb{R}\) such that the conditions
\[
\begin{align*}
\tilde{g} - C_T (\lambda_i, r) &\leq \tilde{g} - I_T (\gamma_i, r); \\
\tilde{g} - C_T (\delta_i, r) &\leq \tilde{g} - I_T (\mu_j, r); \\
\tilde{g} - C_T (\lambda, r) &\leq \tilde{g} - I_T (\delta_j, r); \\
\tilde{g} - C_T (\gamma_i, r) &\leq \tilde{g} - I_T (\mu, r); \\
\tilde{g} - C_T (\gamma_i, r) &\leq \tilde{g} - I_T (\delta_j, r),
\end{align*}
\]
hold for all \(i, j = 1, 2, \ldots, n-1\). Clearly \((S_2)\) follows at once from the fuzzy \(\tilde{g}\)-normality of \((X, T)\). Now, suppose that for \(n \geq 2\), \(\gamma_i, \delta_i \in I_X^\mathbb{R}\) \((i < n)\) such that \((S_n)\) holds.

Since, \(\tilde{g} - C_T (\lambda_n, r) \leq \tilde{g} - C_T (\lambda, r) \leq \tilde{g} - I_T (\delta_j, r)\) \((j < n)\) and \(\tilde{g} - C_T (\lambda_n, r) \leq \tilde{g} - I_T (\mu, r)\) by fuzzy \(\tilde{g}\)-normality of \((X, T)\), there exists a \(\gamma_n \in I_X^\mathbb{R}\) such that
\[
\tilde{g} - C_T (\lambda_n, r) \leq \tilde{g} - I_T (\gamma_n, r) \leq \tilde{g} - C_T (\gamma_n, r) \leq \tilde{g} - I_T (\{ j < \delta \land \mu \}).
\]
Similarly, Since \(\tilde{g} - C_T (\lambda, r) \leq \tilde{g} - I_T (\mu_n, r)\) and

57
\[\dot{g} - C_T (\gamma_i, r) \leq \dot{g} - I_T (\mu_n, r) \quad (i \leq n), \]

there exists a \(\delta_n \in I^X \) such that

\[
\bigvee_{i \leq n} \gamma_i \bigvee \lambda \leq \dot{g} - I_T (\delta_n, r) \leq \dot{g} - C_T (\delta_n, r) \leq \dot{g} - I_T (\mu_n, r). \]

Thus \(S_{n+1} \) holds.

Proposition 3.2.5 Let \((X, T)\) be a smooth fuzzy topological space which is also a fuzzy \(\dot{g} \)-normal space. If \(\{q_j\}_{j \in Q} \) and \(\{q'_j\}_{j \in Q} \) are monotone increasing collections of respectively, fuzzy \(\dot{g} \)-closed and fuzzy \(\dot{g} \)-open subsets of \((X, T)\) \((Q \text{ is the set of all rational numbers})\) such that \(q_j \leq \mu_s \) whenever \(q < s \), then there exists a collection \(\{q'_j\}_{j \in Q} \in I^X \) such that \(\lambda_{q_j} \leq \dot{g} - I_T (\gamma_s, r) \), \(\dot{g} - C_T (\gamma_{q'_j}, r) \leq \dot{g} - I_T (\gamma_s, r) \) and \(\dot{g} - C_T (\gamma_{q'_j}, r) \leq \mu_s \) whenever \(q < s \), \(r \in I_0 \).

Proof: Let us arrange into a sequence \(\{q_n\} \) of all rational numbers \((\text{without repetitions})\). For every \(n \geq 2 \) we shall define inductively a collection \(\{\gamma_i / 1 \leq i \leq n\} \in I^X \) such that

\[
\lambda_q \leq \dot{g} - I_T (\gamma_i, r) \quad \text{if } q < q_i; \]

58
\[\tilde{g} \cdot C_T(\gamma_i, r) \leq \mu_q \quad \text{if } q_i < q; \quad (S_n) \]

\[\tilde{g} \cdot C_T(\gamma_i, r) \leq \tilde{g} \cdot I_T(\gamma_j, r) \quad \text{if } q_i < q_j, \]

for all \(1 \leq i, j < n \). It is clear that the countable collections \(\{ \lambda_q / q < q_1 \} \) and \(\{ \mu_q / q > q_1 \} \) together with \(\lambda_\sim \) and \(\mu_\sim \) satisfy all hypotheses of Proposition 3.2.4, so that there exists \(\delta_1 \in I^X \) such that

\[\lambda_q \leq \tilde{g} \cdot I_T(\delta_1, r) \quad \text{for all } q < q_1 \quad \text{and} \]

\[\tilde{g} \cdot C_T(\delta_1, r) \leq \mu_q \quad \text{for all } q > q_1. \]

Letting \(\gamma_\sim = \delta_1 \), we get \((S_2)\). Assume that the fuzzy subsets \(\gamma_\sim \) are already defined for \(i < n \) and satisfy \((S_n)\).

Define \(\lambda = \vee \{ \gamma_i / i < n, q_i < q_n \} \vee \lambda_\sim \) and \(\mu = \wedge \{ \gamma_j / j < n, q_j < q_n \} \wedge \mu_\sim \).

Then, \(\tilde{g} \cdot C_T(\gamma_i, r) \leq \tilde{g} \cdot C_T(\lambda, r) \leq \tilde{g} \cdot I_T(\gamma_j, r) \) and

\[\tilde{g} \cdot C_T(\gamma_i, r) \leq \tilde{g} \cdot I_T(\mu, r) \leq \tilde{g} \cdot I_T(\gamma_j, r) \quad \text{whenever } q_i < q_n < q_j \]

(\(i, j < n \)) as well as

\[\lambda_q \leq \tilde{g} \cdot C_T(\lambda, r) \leq \mu_s \quad \text{and} \]

\[\lambda_q \leq \tilde{g} \cdot I_T(\mu, r) \leq \mu_s \quad \text{whenever } q < q_n < s. \]

This shows that the countable collections

\[\{ \gamma_i / i < n, q_i < q_n \} \vee \{ \lambda_q / q < q_n \} \quad \text{and} \]

\[\{ \gamma_j / j < n, q_j > q_n \} \vee \{ \mu_q / q > q_n \} \]

together with \(\lambda \) and \(\mu \) satisfy all hypotheses of Proposition 3.2.4.

Hence there exists a \(\delta_n \in I^X \) such that

\[\lambda_q \leq \tilde{g} \cdot I_T(\delta_n, r) \quad \text{if } q < q_n, \]

59
\[\mathcal{g}\mathcal{-C}_\mathcal{T}(\gamma_{\gamma'}, r) \leq \mathcal{g}\mathcal{-I}_\mathcal{T}(\delta_n, r) \text{ if } q_i < q_n, \]
\[\mathcal{g}\mathcal{-C}_\mathcal{T}(\delta_n, r) \leq \mu_q \text{ if } q_n < q, \]
\[\mathcal{g}\mathcal{-C}_\mathcal{T}(\delta_n, r) \leq \mathcal{g}\mathcal{-I}_\mathcal{T}(\gamma_{\gamma'}, r) \text{ if } q_n < q_j \text{ where } 1 \leq i, j \leq n - 1. \]

Letting \(\gamma_{\gamma'} = \delta_n \), we obtain fuzzy subsets \(\gamma_{\gamma'}, \gamma_{\gamma'}, \ldots, \gamma_{\gamma'} \) that satisfy the result (\(S_{n+1} \)). Therefore the collection \{ \gamma_{\gamma'} \mid i = 1, 2, \ldots \} has the required properties. This completes the proof.

3.3 Fuzzy \(\mathcal{g}\mathcal{-}\text{Regular Space}\) and its Characterizations

In this section, the concept of fuzzy \(\mathcal{g}\mathcal{-}\)regular spaces is introduced. Some interesting characterizations are established.

Definition 3.3.1 A smooth fuzzy topological space \((X, T)\) is called a fuzzy \(\mathcal{g}\mathcal{-}\)regular space if for every \(r\)-fuzzy \(\mathcal{g}\mathcal{-}\)closed set \(\lambda \) and each \(\alpha \in \mathcal{I}^X \) with \(\alpha \not\approx \lambda \), there exist \(\mu, \delta \in \mathcal{I}^X \) with \(T(\mu) \geq r, T(\delta) \geq r \) and \(\delta \not\approx \mu \) such that \(\alpha \leq \delta, \lambda \leq \mu, r \in \mathcal{I}_0 \).

Proposition 3.3.1 Let \((X, T)\) be a smooth fuzzy topological space. Then the following statements are equivalent:

(a) \((X, T)\) is fuzzy \(\mathcal{g}\mathcal{-}\)regular.

(b) For each \(\alpha \in \mathcal{I}^X \) and \(r\)-fuzzy \(\mathcal{g}\mathcal{-}\)open set \(\lambda \in \mathcal{I}^X \) with \(\alpha \not\approx \lambda \), there exists a \(\delta \in \mathcal{I}^X \) with \(T(\delta) \geq r, \alpha \leq \delta \) such that \(C_T(\delta, r) \leq \lambda, r \in \mathcal{I}_0 \).

Proof: (a) \(\Rightarrow \) (b). Let \(\lambda \) be any \(r\)-fuzzy \(\mathcal{g}\mathcal{-}\)open set with \(\alpha \not\approx \lambda \). By hypothesis, there exist \(\mu, \delta \in \mathcal{I}^X \) with \(T(\mu) \geq r, T(\delta) \geq r \) and \(\delta \not\approx \mu \) such that \(\overline{1 - \lambda} \leq \mu \) and \(\alpha \leq \delta \).
Since $\delta \not\in \mu$ implies $\delta \leq 1 - \mu$, $C_T(\delta, r) \leq C_T(\bar{1} - \mu, r) = \bar{1} - \mu$.

But, $1 - \lambda \leq \mu$ gives $1 - \mu \leq \lambda$. That is, $C_T(\delta, r) \leq \lambda$. Hence the result.

(b) ⇒ (a). Let γ be any r-fuzzy \tilde{g}-closed set with $\alpha \not\in \gamma$ for any $\alpha \in I^X$.

Now, $1 - \gamma$ is r-fuzzy \tilde{g}-open. By hypothesis, there exists a $\delta \in I^X$ with $T(\delta) \geq r$, $\alpha \leq \delta$ such that $C_T(\delta, r) \leq 1 - \gamma$. Then, $\gamma \leq 1 - C_T(\delta, r)$.

Now, $\delta \leq 1 - (1 - C_T(\delta, r))$ such that $\alpha \leq \delta$ and $\gamma \leq 1 - C_T(\delta, r)$. Therefore (X, T) is fuzzy \tilde{g}-regular.

Proposition 3.3.2 Let (X, T) be a smooth fuzzy topological space.

Then (X, T) is fuzzy \tilde{g}-regular iff for every r-fuzzy \tilde{g}-closed set $\lambda \in I^X$ and $\alpha \in I^X$ with $\alpha \not\in \lambda$, there exist μ, $\delta \in I^X$ with $T(\mu) \geq r$, $T(\delta) \geq r$ such that $\alpha \leq \delta$, $\lambda \leq \mu$ then $\mu \not\in C_T(\delta, r)$, $r \in I_0$.

Proof: Let (X, T) be a fuzzy \tilde{g}-regular space. Let $\lambda \in I^X$ be any r-fuzzy \tilde{g}-closed set and α be such that $\alpha \not\in \lambda$. Since (X, T) is fuzzy \tilde{g}-regular, there exist μ, δ with $T(\mu) \geq r$, $T(\delta) \geq r$, $\delta \not\in \mu$ such that $\alpha \leq \delta$, $\lambda \leq \mu$.

Now, $\delta \not\in \mu$ implies that $C_T(\delta, r) \leq C_T(\bar{1} - \mu, r) = \bar{1} - \mu$. That is, $\mu \not\in C_T(\delta, r)$. Hence the result. Converse part is trivial.

Proposition 3.3.3 Let (X, T) and (Y, S) be any two smooth fuzzy topological spaces. If $f : (X, T) \rightarrow (Y, S)$ is bijective, fuzzy \tilde{g}-irresolute, fuzzy open and if (X, T) is a fuzzy \tilde{g}-regular space, then (Y, S) is fuzzy \tilde{g}-regular.

Proof: Let $\lambda \in I^Y$ be any r-fuzzy \tilde{g}-closed set and $\beta \in I^Y$ be such that $\beta \not\in \lambda$, $r \in I_0$. Since f is fuzzy \tilde{g}-irresolute, $f^-(\lambda) \in I^X$ is r-fuzzy
\(\tilde{g} \)-closed. Let \(f(\alpha) = \beta \) for any \(\alpha \in \mathcal{I}^X \). Since \(f \) is bijective, \(\alpha = f^{-1}(\beta) \).

Since \((X, T) \) is fuzzy \(\tilde{g} \)-regular and \(\alpha \notin f^{-1}(\lambda) \) there exist \(\mu, \delta \in \mathcal{I}^Y \) with \(T(\mu) \geq r, T(\delta) \geq r \) and \(\delta \nsubseteq \mu \) such that \(\alpha \leq \delta \) and \(f^{-1}(\lambda) \leq \mu \).

Since \(f \) is fuzzy open and bijective, \(f(\alpha) \leq f(\delta) \) implies that \(\beta \leq f(\delta) \), \(\lambda \leq f(\mu) \) and \(S(f(\delta)) \geq r \), \(S(f(\mu)) \geq r \) with \(f(\delta) \nsubseteq f(\mu) \). Hence \((Y, S) \) is fuzzy \(\tilde{g} \)-regular.

Proposition 3.3.4 Let \((X, T) \) and \((Y, S) \) be any two smooth fuzzy topological spaces. If \(f : (X, T) \to (Y, S) \) is fuzzy \(\tilde{g} \)-closed, fuzzy continuous, injective and \((Y, S) \) is fuzzy \(\tilde{g} \)-regular then \((X, T) \) is fuzzy \(\tilde{g} \)-regular.

Proof: Let \(\lambda \in \mathcal{I}^X \) be any \(r \)-fuzzy \(\tilde{g} \)-closed set and \(\alpha \in \mathcal{I}^X \) be such that \(\alpha \notin \lambda, r \in I_0 \). Since \(f \) is fuzzy \(\tilde{g} \)-closed, \(f(\lambda) \in \mathcal{I}^Y \) is \(r \)-fuzzy \(\tilde{g} \)-closed and \(f(\alpha) \notin f(\lambda) \). Since \((Y, S) \) is fuzzy \(\tilde{g} \)-regular, there exist \(\mu, \delta \in \mathcal{I}^Y \) with \(S(\mu) \geq r, S(\delta) \geq r \) and \(\delta \nsubseteq \mu \) such that \(f(\alpha) \leq \mu \) and \(f(\lambda) \leq \delta \).

Since \(f \) is fuzzy continuous, \(f^{-1}(\mu) \), \(f^{-1}(\delta) \in \mathcal{I}^X \) with \(T(f^{-1}(\mu)) \geq r \) and \(T(f^{-1}(\delta)) \geq r \). Also, \(\alpha \leq f^{-1}(\mu) \), \(\lambda \leq f^{-1}(\delta) \) and \(f^{-1}(\delta) \nsubseteq f^{-1}(\mu) \).

Therefore \((X, T) \) is fuzzy \(\tilde{g} \)-regular.

Proposition 3.3.5 Let \((X, T) \) be a smooth fuzzy topological space. Then the following statements are equivalent:

(a) \((X, T) \) is fuzzy \(\tilde{g} \)-regular.

(b) For every \(r \)-fuzzy \(\tilde{g} \)-open set \(\lambda \in \mathcal{I}^X \) and \(\alpha \in \mathcal{I}^X \) such that \(\alpha \leq \lambda \) there exists a \(\gamma \in \mathcal{I}^X \) with \(T(\gamma) \geq r \) such that \(\alpha \leq \gamma \leq C_T(\gamma, r) \leq \lambda \).
(c) For every r-fuzzy \(\tilde{g} \)-open set \(\lambda \in I^X \) and \(\alpha \in I^X \) such that \(\alpha \leq \lambda \), there exists a \(\delta \in I^X \) with \(T(\delta) \geq r \) and \(\delta = I_T(\Delta, r) \), \(T(\tilde{\lambda} - \Delta) \geq r \) such that \(\alpha \leq \delta \leq C_T(\delta, r) \leq \lambda \).

(d) For every r-fuzzy \(\tilde{g} \)-closed set \(\mu \in I^X \) and \(\alpha \in I^X \) such that \(\alpha \notin \mu \) there exist \(\gamma, \lambda \in I^X \) with \(T(\gamma) \geq r \) and \(T(\lambda) \geq r \) such that \(\alpha \leq \gamma, \mu \leq \lambda \) with \(C_T(\gamma, r) \notin C_T(\lambda, r) \).

Proof: (a) \(\Rightarrow \) (b). Let \(\lambda \) be an r-fuzzy \(\tilde{g} \)-open set such that \(\alpha \leq \lambda \). Now, \(\tilde{1} - \lambda \) is an r-fuzzy \(\tilde{g} \)-closed set. By (a), \(\alpha \notin \tilde{1} - \lambda \). Since \((X, T)\) is fuzzy \(\tilde{g} \)-regular, there exist \(\gamma, \delta \in I^X \) with \(T(\gamma) \geq r \), \(T(\delta) \geq r \) and \(\gamma \notin \delta \) such that \(\alpha \leq \gamma, \tilde{1} - \lambda \leq \delta \). Since \(\gamma \notin \delta \), \(\gamma \leq \tilde{1} - \delta \).

Hence, \(C_T(\gamma, r) \leq C_T(\tilde{1} - \delta, r) = \tilde{1} - \delta \), since \(T(\delta) \geq r \). Now, \(\tilde{1} - \delta \leq \lambda \). Therefore, \(\alpha \leq \gamma \leq C_T(\gamma, r) \leq \lambda \).

(b) \(\Rightarrow \) (c). Let \(\lambda \) be an r-fuzzy \(\tilde{g} \)-open set such that \(\alpha \leq \lambda \). By (b), there exists a \(\gamma \in I^X \) with \(T(\gamma) \geq r \) such that \(\alpha \leq \gamma \leq C_T(\gamma, r) = \Delta \leq \lambda \). Let \(\delta = I_T(\Delta, r) \) where \(\Delta = C_T(\gamma, r) \). Also, \(\alpha \leq \delta \leq C_T(\delta, r) \) \(= C_T(I_T(\Delta, r), r) \leq C_T(\Delta, r) = C_T(C_T(\gamma, r), r) = C_T(\gamma, r) \leq \lambda \). Thus, \(\alpha \leq \delta \leq C_T(\delta, r) \leq \lambda \).

(c) \(\Rightarrow \) (d). Let \(\mu \) be an r-fuzzy \(\tilde{g} \)-closed set with \(\alpha \notin \mu \). Then \(\tilde{1} - \mu \) is an r-fuzzy \(\tilde{g} \)-open set with \(\alpha \leq \tilde{1} - \mu \). By (c), there exists a \(\delta \in I^X \) with \(T(\delta) \geq r \) such that \(\alpha \leq \delta \leq C_T(\delta, r) \leq \tilde{1} - \mu \) where \(\delta = I_T(\Delta, r) \) for
some \(\Delta \in I^x \) with \(T(\bar{I} - \Delta) \geq r \). Again by hypothesis there exists a \(\gamma \in I^x \) such that

\[
\alpha \leq \gamma \leq C_I(\gamma, r) \leq \delta. \text{ Let } \lambda = \bar{I} - C_I(\delta, r). \tag{3.1.1}
\]

Then, \(\alpha \leq \gamma, \mu \leq \lambda \). By (3.1.1), \(\lambda \leq \bar{I} - \delta \).

Now, \(C_I(\lambda, r) \leq \bar{I} - \delta \leq \bar{I} - C_I(\gamma, r) \). Thus, \(C_I(\gamma, r) \notin C_I(\lambda, r) \).

(d) \(\Rightarrow \) (a). The proof is trivial.