REFERENCES


255
86. FAO (Food Agriculture Organisation), Compendium of food additive specifications, FNP 2, 821, 1991.

256


114. Khar R and Vyas SP. The theory and practice of industrial pharmacy. CBS Publishers
115. Baumgartner S and Kristl J. Optimization of floating matrix tablets and evaluation of
116. Lipper RA and Higuchi WI. Analysis of theoretical behavior of a proposed zero-order
117. Malviya R and Pranati S .Formulation, evaluation and comparison of sustained release
matrix tablets of Diclofenac sodium using tamarind gum as release modifier. Asian J
Pharm Cli Res. 3(3): 238-241; 2010.
118. Higuchi T. Theoretical analysis of rate of release of solid drugs dispersed in solid
119. Roy DS, Rohera BD. Comparative evaluation of rate of hydration and matrix erosion of
HEC and HPC and study of drug release from their matrices. Eur J Pharm Sci. 16b: 1993-
120. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers, Pharm
121. Dhopeshwarkar V and Zatz JL. Evaluation of xanthan gum in the preparation of
122. Munday DL and Cox PJ. Compressed Xanthan and Karya gum matrices: hydration,
123. Talukdar MM and Armand M. Comparative study on Xanthan gum and hydroxyl propyl
methyl cellulose as matrices for controlled-release drug delivery I. Compaction and in
124. Gohel MC and Panchal MK. Novel use of similarity factors f2 and Sd for the
development of Diltiazem HCl modified-release tablets using a 3² factorial design. Drug
Dev Ind Pharm. 28(1): 77–87; 2002.
1st edn., Vignesh Publisher, Chennai, 288-299; 1995.
126. Kumar M and Selvi R. Formulation and in vitro evaluation of gastroretentive floating


