LIST OF FIGURES

1.1 Structure of xanthomonadin I ... 3
1.2 Colonies of *Xanthomonas oryzae* pv. *oryzae* 4
1.3 Disease symptoms of bacterial leaf blight of rice 7
1.4 Life cycle of *Xanthomonas oryzae* pv. *oryzae* 8
1.5 Structures of lycopene, spirilloxanthin and chlorobactene 11

2.1 Plasmid transfer from *Escherichia coli* to *Xanthomonas oryzae* pv. *oryzae* .. 34
2.2 Schematic representation of pUFR034 35
2.3 Estimation of average insert size in the genomic library of *Xanthomonas oryzae* pv. *oryzae* ... 37
2.4 Genomic library has insert DNA from *Xanthomonas oryzae* pv. *oryzae* .. 38
2.5 Colony hybridization using a repeat sequence of *Xanthomonas oryzae* pv. *oryzae* as the probe 40
2.6 Colony hybridization using a single copy sequence of *Xanthomonas oryzae* pv. *oryzae* as the probe 41
2.7 Cloned DNA is not rearranged when reintroduced into *Xanthomonas oryzae* pv. *oryzae* ... 43
2.8 Evidence for the presence of a previously unidentified restriction-modification system in the BXO1 strain of *Xanthomonas oryzae* pv. *oryzae* ... 46
2.9 Schematic representation of the protocol to obtain Tn5*gusA40* fusions into cloned *Xanthomonas oryzae*
3.1 Colonies of pigment proficient and pigment deficient strains of *Xanthomonas oryzae* pv. *oryzae*

3.2 Virulence properties of pigment deficient mutants of *Xanthomonas oryzae* pv. *oryzae*

3.3 Rice leaves infected with pigment deficient *Xanthomonas oryzae* pv. *oryzae* strains

3.4 Bacterial ooze from the cut end of an infected rice leaf

4.1 Structure of xanthomonadin I

4.2 Absorption spectra of methanolic extracts of *Xanthomonas oryzae* pv. *oryzae* strains

4.3 & Kinetics of survival of *Xanthomonas oryzae* pv. *oryzae* strains after exposure to light and air in the presence of toluidine blue

4.4 A clone containing the xanthomonadin biosynthetic genes alleviates the hypersensitivity of the pigment deficient mutant

4.5 Xanthomonadin protects lipids from peroxidation in liposomes

4.6 & Sequences homologous to the xanthomonadin biosynthetic region of *X. campestris* pv. *campestris* are present in the genome of *Xanthomonas oryzae* pv.
Colony hybridization using the xanthomonadin biosynthetic gene cluster from *Xanthomonas campestris* pv. *campestris* as the probe 123

An agarose gel profile of the plasmids isolated from the clones of *Xanthomonas oryzae* pv. *oryzae* that show homology to the xanthomonadin clone from *X. campestris* pv. *campestris* 125

An *EcoRI* restriction map of the xanthomonadin biosynthetic gene cluster and flanking regions of *Xanthomonas oryzae* pv. *oryzae* 127

Transposon 5 induced pigment deficient mutants have insertions in the xanthomonadin biosynthetic gene cluster of *Xanthomonas oryzae* pv. *oryzae* 129

Restriction map and localization of the Tn5gus insertions on the xanthomonadin biosynthetic region of *Xanthomonas oryzae* pv. *oryzae* 133

Complementation for pigment production by a clone containing genes required for xanthomonadin biosynthesis from *Xanthomonas oryzae* pv. *oryzae* 136

Virulence properties of pigment deficient mutants of *Xanthomonas oryzae* pv. *oryzae* 161

Rice leaves showing lesions caused by revertants of BX051 (a pigment and virulence deficient mutant of *Xanthomonas oryzae* pv. *oryzae*) 162
6.3 Absorption spectra of methanolic extracts of *Xanthomonas oryzae* pv. *oryzae* strains

6.4 Virulence properties of the prototrophic revertants of BXO51

6.5 RFLP profile of the xanthomonadin gene cluster in wild type and pleiotropic pigment deficient mutant of *Xanthomonas oryzae* pv. *oryzae*

6.6 Virulence properties of arginine auxotrophs of *Xanthomonas oryzae* pv. *oryzae*

6.7 *Xanthomonas oryzae* pv. *oryzae* arginine auxotrophs are unable to cause lesions on rice

A1 Phosphinotricin inhibits growth of *Xanthomonas oryzae* pv. *oryzae*

A2 Minimum inhibitory concentration of 'basta' that inhibits growth of *Xanthomonas oryzae* pv. *oryzae*

A3 Rice leaves treated with basta, one day after inoculation, showed reduced bacterial blight symptoms of rice