CONTENTS

LIST OF FIGURES AND TABLES

i

LIST OF ABBREVIATIONS

iii

ABSTRACT

vi

CHAPTER 1. INTRODUCTION: THE ROLE, MECHANISM AND REGULATION OF mRNA TURNOVER

1.1 GENE EXPRESSION AND mRNA TURNOVER

1

1.2 SIGNIFICANCE OF MESSAGE STABILITY IN CELLULAR PHYSIOLOGY

1

1.3 mRNA TURNOVER: THE PROCESS AND REGULATION

2

1.3.1 Intrinsic and extrinsic stabilities of mRNAs and the levels of regulation of mRNA turnover

2

1.3.2 mRNA turnover process: A general outline

3

1.3.3 Physiological signals affecting mRNA stability

3

Heat shock

4

Hormones and growth factors

4

Viral infection

5

Miscellaneous signals affecting message stability

6
1.4 FACTORS AFFECTING mRNA TURNOVER

1.4.1 Cis-acting factors

- mRNA size
- 5'-cap structure
- Poly (A) tail
- Sequences of the 3'-untranslated region
- Sequences of the coding region and translation
- Sequences of the 5'-untranslated region
- Posttranscriptional base modifications

1.4.2 RNases and other trans-acting factors

- Role of poly (A) binding protein
- mRNA-specific RNase activities
- RNA binding proteins
- RNA as a trans-acting factor

1.4.3 Intracellular location

1.5 CURRENT MODELS AND PERSPECTIVES

1.6 OPEN QUESTIONS

1.7 OBJECTIVES OF THE PRESENT WORK

CHAPTER 2. MATERIALS AND METHODS

2.1 MATERIALS

- 2.1.1 Enzymes, fine chemicals and other materials
- 2.1.2 Plasmids
- 2.1.3 Media for bacterial culture and incubation of hepatocytes
2.2 METHODS

2.2.1 Animals and tissue collection
2.2.2 Preparation of RNA samples

Total RNA
- Poly (A)⁻ and poly (A)⁺ RNA fractions
- Cytoplasmic RNA
- Membrane bound and free polysomal RNA
- E. coli RNA

2.2.3 Phenol:chloroform extraction of DNA
2.2.4 Precipitation and desalting of nucleic acids
2.2.5 Estimation of nucleic acids
2.2.6 Agarose gel electrophoresis
2.2.7 Polyacrylamide gel electrophoresis
2.2.8 Large scale isolation and purification of plasmids
2.2.9 Preparation of end labelled probes

Restriction enzyme digestion of plasmid
- 5'-end labeling of DNA
- 3'-end labeling of DNA
- Purification of the labelled cDNA probes
- Electroelution of labelled cDNA insert from gel slice

2.2.10 Protein estimation
2.2.11 Preparation of postnuclear supemate
2.2.12 Preparation of postmitochondrial supemate and cytosolic fraction
2.2.13 Nuclease S1 protection analysis and assay
2.2.14 In vitro mRNA decay reactions
2.2.15 Assay of neutral/alkaline RNase activity

Perchloric acid precipitation assay
Gel assay
2.2.16 Preparation of rat hepatocytes in suspension 38
2.2.17 Western blotting 39
2.2.18 Purification of rat liver RNase inhibitor 39
Preparation of sepharose-RNase A 40
Ammonium sulfate precipitation and affinity purification of RNase inhibitor 40

CHAPTER 3. STUDIES ON ALBUMIN mRNA DEGRADATION

PART-A: STUDY OF IN VIVO GENERATED CLEAVAGES OF MOUSE LIVER ALBUMIN mRNA 41

3.1 INTRODUCTION 41

3.2 RESULTS 42

3.2.1 Albumin mRNA expression in nonhepatic fetal tissues of mouse 42
3.2.2 Detection and characterization of albumin mRNA degradation intermediates and cleavages in mouse liver 42

S1 nuclease protection analysis of adult and fetal mouse liver RNA with 5'-end labelled albumin cDNA probe 43
Control experiments to examine the in vivo origin of degradation intermediates and S1 controls 43
S1 nuclease protection analysis of fetal and adult mouse liver RNA using 3'-end labelled albumin cDNA probe 45

3.2.3 Changes in the levels of albumin mRNA degradation intermediates during development 47
3.2.4 Specificity of the changes in the levels of albumin mRNA degradation intermediates during development

Cytosolic RNase activity in fetal and adult mouse liver

AFP mRNA degradation intermediates during development

3.2.5 Albumin mRNA degradation intermediates in regenerating liver?

3.2.6 Distribution of albumin mRNA between membrane bound and free ribosomes in fetal and adult liver

3.2.7 Search for other condition(s) involving mouse albumin mRNA fragmentation

3.3 DISCUSSION

3.3.1 Specificity of mouse liver albumin mRNA cleavages

3.3.2 Variation in the levels of albumin mRNA degradation intermediates and the turnover rate of albumin mRNA

3.3.3 Role of posttranscriptional control mechanisms in the developmental regulation of albumin gene expression

3.3.4 Study of mRNA degradation intermediates as an approach to understand the regulation of mRNA turnover in whole animals

PART-B: STUDY OF ALBUMIN mRNA DEGRADATION IN VITRO

3.4 INTRODUCTION

3.5 RESULTS

3.5.1 Degradation of albumin mRNA in vitro in the presence of fetal liver postnuclear supernate

3.5.2 In vitro degradation in the presence of adult liver postnuclear supernate
3.6 DISCUSSION

PART-C: POSSIBLE MODEL TO EXPLAIN THE MECHANISM OF REGULATION OF ALBUMIN mRNA TURNOVER DURING MOUSE LIVER DEVELOPMENT

PART-D: SUMMARY OF THE RESULTS AND CONCLUSIONS

PART-E: SUGGESTED FUTURE LINE OF WORK

CHAPTER 4. INTRACELLULAR RNASES

4.1 INTRODUCTION AND BASIS

4.2 THE AGAROSE GEL ELECTROPHORESIS-BASED RNASE ASSAY
 4.2.1 Results and discussion

4.3 STUDIES ON THE LIVER AND KIDNEY CYTOSOLIC RNASE ACTIVITIES OF RAT
 4.3.1 Results
 4.3.2 Discussion

4.4 SUMMARY OF THE RESULTS AND CONCLUSIONS

CHAPTER 5. REFERENCES