CHAPITERS 1

List of Tables

Table 1. Floral characteristics of *B. diffusa*
Table 2. Flowering density per plant of *B. diffusa* as affected by temperature during different months
Table 3. Correlation in the growth of bud with pistil and stamen of *B. diffusa*
Table 4. Correlation in growth of pistil with bud and stamen at different bud sizes in *B. diffusa*
Table 5. Time of anthesis and anther dehiscence in *B. diffusa* during different months
Table 6. The two lobes of each anther in *B. diffusa* vary in size. The data represents calculated volume of the small and big lobe and number of pollen grains in each of the lobe
Table 7. Microchemical tests on the pollen of *B. diffusa*
Table 8. Comparison of *in vitro* germination of pollen from the big and small lobes of anther of *B. diffusa*
Table 9. *In vitro* germination of pollen of *B. diffusa*: Effect of temperature
Table 10. *In vitro* germination of pollen of *B. diffusa*. Interaction of sucrose and temperature
Table 11. *In vitro* germination of pollen of *B. diffusa*. Interaction of pH and temperature*
Table 12. *In vitro* germination of pollen of *B. diffusa*. Interaction of RH and sucrose
Table 13. *In vitro* germination of pollen of *B. diffusa*. Effect of varying salts of BK medium
Table 14. *In vitro* germination of pollen of *B. diffusa*: Modified medium
Table 15. *In vitro* germination of pollen of *B. diffusa*. Effect of carbohydrate source: sucrose vs. mannitol
Table 16. *In vitro* germination of pollen of *B. diffusa*. Effect of carbohydrate source: sucrose vs glucose
Table 17. *In vitro* germination of pollen of *B. diffusa*. Effect of carbohydrate source: sucrose vs fructose
Table 18. *In vitro* germination of pollen grains of *B. diffusa*. Influence of myo inositol
Table 19. *In vitro* germination of pollen of *B. diffusa*. Effect of Osmotica: sucrose vs. PVP
Table 20. *In vitro* germination of pollen grains of *B. diffusa*. Effect of 2,4-D
Table 21. *In vitro* germination of pollen grains of *B. diffusa*. Effect of Kinetin
Table 22. *In vitro* germination of pollen germination of *B. diffusa*. Effect of salicylic acid
Table 23. *In vitro* germination of pollen of *B. diffusa*. Effect of stigma extract of *B. diffusa* itself
Table 24. *In vitro* germination of pollen of *B. diffusa*. Effect of inflorescence extract of *Spilanthes acmella*
Table 25. *In vitro* germination of pollen of *B. diffusa*. Optimization of germination Medium using Neural Network and Genetic Algorithm
Table 25A-C. Data generated through Neural Network and Genetic Algorithm for optimizing conditions of *in vitro* pollen germination
Table 26. Distribution of pollen on stigma of *B. diffusa* during different months
Table 27. Stigma receptivity in *B. diffusa*: Per cent fruit set in emasculated buds pollinated at different time intervals
Table 28. Activity of stigma enzymes in *B. diffusa* at different time intervals after pollination
Table 29. Conversion of flowers into healthy seeds in natural population of *B. diffusa* during different months
Table 30. Healthy and aborted fruit set at different levels of branches in natural population of *B. diffusa*
Table 31. Conversion of flowers into healthy seeds in the natural population of *B. diffusa* at different locations
Table 32. Soil analysis at the four locations where fruit set was studied in the natural population of *B. diffusa*
Table 33. Moisture content in the soil at different locations
Table 34. Conversion of flowers into healthy seeds. Effect of irrigation with nutrient solution in *B. diffusa*
CHAPTER 2

List of Tables

Table 1. Trichomes on the stem of *B. diffusa*. Dimensions of short and long Glandular Cylindrical Trichomes

Table 2. Trichomes on the leaf of *B. diffusa*. Dimensions of short and long Glandular Cylindrical Trichomes

Table 3. Trichomes on the perianth of *B. diffusa*. Dimensions of branched and unbranched Glandular Cylindrical Trichomes

Table 4. Trichomes on the bract of *B. diffusa*. Dimensions of short and long Glandular Cylindrical Trichomes

Table 5. Trichomes on ovary of *B. diffusa*. Dimensions of short and long Glandular Cylindrical Trichomes and Glandular Spherical Trichomes

Table 6. Trichomes on fruit of *B. diffusa*. Dimensions of short and long Glandular Cylindrical Trichomes and Glandular Spherical Trichomes

Table 7. Density of trichomes on various parts of *B. diffusa*

Table 8. Trichomes on the fruits of *B. diffusa*. Monthly variation in GCTs and GSTs

Table 9. Trichomes on the fruits of *B. diffusa*. Monthly variation in short and long trichomes of GSTs and GCTs

Table 10. Presence or absence of various metabolites in trichomes on different parts of *B. diffusa*.

Table 11. Summary statistics of ESTs generated from Glandular Cylindrical Trichomes *B. diffusa* fruits

Table 12. Summary statistics of ESTs generated from Glandular Spherical Trichomes *B. diffusa* fruits

Table 13. Annotation of ESTs using NCBI database in GCTs of *B. diffusa*

Table 14. Annotation of ESTs using NCBI database in GSTs of *B. diffusa*

Table 15. Annotation of ESTs using trichOME database in GCTs of *B. diffusa*

Table 16. Annotation of ESTs using trichOME database in GSTs of *B. diffusa*

Table 17. Gene Ontology (GO) using Blast2GO software of high quality ESTs from GCTs of *B. diffusa*

Table 17A. Biological Process in GCTs

Table 17B. Molecular Functions in GCTs.

Table 17C. Cellular Components in GCTs.

Table 18. Gene Ontology (GO) of high quality ESTs from GSTs of *B. diffusa* using Blast2GO software.

Table 18A. Molecular Function

Table 18B. Cellular Components

Table 19. InterProScan using amino acid sequences which were generated from UniESTs using ORF Predictor in GCTs of *B. diffusa*

Table 20. InterProScan using amino acid sequences which were generated from UniESTs using ORF Predictor in GSTs of *B. diffusa*

Table 21. TargetP cleavage site predictions in ESTs of GCTs of *B. diffusa*

Table 22. TargetP cleavage site predictions in ESTs of GSTs of *B. diffusa*

Table 23. The enzymes identified in GCTs of *B. diffusa* using KEGG online software

Table 24. The enzymes identified in GSTs of *B. diffusa* using KEGG online software
CHAPTER 3

. List of Tables

Table 1. Internode and leaf explants of B. diffusa plants from field. Effect of 2,4-D concentrations on callus initiation

Table 2. Internode explants of B. diffusa plants from field. Effect of 2,4-D and kinetin concentrations on regeneration and callus growth

Table 3. Effect of 2,4-D and BAP concentrations on growth of callus from internode explants of B. diffusa plant from field

Table 4. Effect of 2,4-D and kinetin concentrations on leaf explants of B. diffusa plants from field. MS basal medium was supplemented with 10 mg/l Activated charcoal

Table 5. Effect of 2,4-D concentrations on callus initiation from internode and leaf explants from in vitro raised seedlings of B. diffusa

Table 6. Effect of 2,4-D and kinetin concentrations on morphogenic response of callus from internode explants from in vitro raised seedlings of B. diffusa

Table 7. Effect of NAA and kinetin concentrations on regeneration and growth of callus from internode explants from in vitro raised seedlings of B. diffusa

Table 8. Effect of BAP, NAA and Casein hydrolysate on regeneration and growth of callus from leaf explants from in vitro raised seedlings of B. diffusa

Table 9. Effect of IAA and BAP concentrations on regeneration and growth of callus from leaf explants from in vitro raised seedlings of B. diffusa

Table 10. Effect of NAA and 2iP concentrations on regeneration and growth of callus from leaf explants from in vitro raised seedlings of B. diffusa

Table 11. Effect of BAP and TDZ concentrations on regeneration and growth of callus from leaf explants from in vitro raised seedlings of B. diffusa

Table 12. Effect of BAP concentration on regeneration from various explants of in vitro raised seedlings of B. diffusa

Table 13. Effect of BAP concentration on regeneration from various explants of in vitro raised seedlings of B. diffusa

Table 14. Effect of 2,4-D, kinetin and AgNO₃ concentrations on callus from internode explants from in vitro raised seedlings of B. diffusa

Table 15. Effect of 2,4-D and BAP concentrations on growth of callus from internode explants from in vitro raised seedlings of B. diffusa

Table 16. Effect of 2,4-D and kinetin concentrations on growth of callus from leaf explants from in vitro raised seedlings of B. diffusa

Table 17. Effect of 2,4-D and kinetin concentrations on growth of callus from leaf explants from in vitro raised seedling of B. diffusa

Table 18. Effect of 2,4-D and TDZ concentrations on growth of callus from leaf explants from in vitro raised seedlings of B. diffusa

Table 19. Effect of 2,4-D, BAP and TDZ concentrations on growth of callus obtained from leaf explants from in vitro raised seedlings of B. diffusa

Table 20. Effect of 2,4-D on callus formation from immature embryos of B. diffusa

Table 21. Effect of 2,4-D and Kn concentrations on regeneration and growth of callus from immature embryo of B. diffusa

Table 22. Effect of kinetin and Proline concentrations on regeneration from callus obtained from immature embryo of B. diffusa

Table 23. Effect of BAP and TDZ concentrations on regeneration from callus from immature embryos of B. diffusa

Table 24. Effect BAP and IAA concentrations on regeneration of callus from immature embryo of B. diffusa

Table 25. Effect of different concentration of NAA and BAP on regeneration and growth of callus from immature embryos of B. diffusa
Table 26. Effect of NAA and 2iP concentrations on regeneration from callus from immature embryo culture of B. diffusa

Table 27. Effect of 2,4-D and Kn concentrations on growth of callus from immature embryos of B. diffusa

Table 28. Effect of 2,4-D and kinetin concentrations on growth of callus from immature embryos of B. diffusa

Table 29. Effect of 2,4-D and BAP concentrations on growth of callus from immature embryos of B. diffusa

Table 30. Effect of 2, 4-D and TDZ concentrations on callus from immature embryos of B. diffusa

Table 31. Effect of 2,4-D, BAP and TDZ concentrations on callus from immature embryo culture of B. diffusa

Table 32. Effect of NAA and AgNO₃ concentrations on callus from immature embryos of B. diffusa.

Table 33. B. diffusa callus growth kinetics. Effect of callus size on growth as elucidated by fresh and dry weight changes over a period of 25 days

Table 34. Numbers of different types of cells in the callus* of B. diffusa

Table 35. Variation in the types of cells and their numbers in the callus* cultures of B. diffusa at regular intervals over a period of 30 days

Table 36. Incremental or decremental variation in the types of cells and their numbers in the callus* cultures of B. diffusa over a period of 30 days

Table 37. Variation in the peroxiase enzymatic activity correlated with the types of cells and their numbers in the callus* cultures of B. diffusa over a period of 30 days

Table 38. Fresh and dry weight changes callus cultures of B. diffusa growing in MS+1mg/l 2,4-D+0.5 mg/l BAP

Table 39. Fresh and Dry weight Changes In callus cultures of B. diffusa growing on MS+1mg/l 2,4-D+0.5 mg/l BAP +1 mg/l NAA

Table 40. Fresh and dry weight changes in callus cultures of B. diffusa. Effect of casein hydrolysate concentrations added to MS + 1 mg/l 2,4-D + 0.1mg/l NAA

Table 41. Fresh and dry weight changes in callus cultures of B. diffusa. Effect Phenylalanine concentrations supplemented to MS + 1 mg/l 2,4-D +0.5 mg/l BAP

Table 42. Comparison of growth of B. diffusa Callus on various media as reflected by the net incremental changes in fresh and dry weights over a 20-day culture period

Table 43. Phytochemical screening of different fraction extracts of the callus of B. diffusa

Table 44. Quantification of flavonoids in callus* of B. diffusa from the calibration data of standards obtained by HPTLC