LIST OF FIGURES

Figure 3.1 Variation of quantum diffusion coefficient vs time at different temperatures for $\gamma = 4.52$ (Scale arbitrary). ... 53

Figure 3.2 Variation of steady state diffusion coefficient as a function of temperature for $\gamma = 4.52$ (Scale arbitrary). 54

Figure 3.3 Variation of quantum mean square displacement, $\langle q^2(t)\rangle_{qs}$ vs time at different temperatures for $\gamma = 4.52$ (Scale arbitrary). 56

Figure 3.4 Variation of quantum mean square displacement, $\langle q^2(t)\rangle_{qs}$ vs time in the short time limit at different temperatures for $\gamma = 4.52$ (Scale arbitrary). 57

Figure 3.5 Variation of $\log_e \left(\langle q^2(t)\rangle_{qs} \right)$ vs $\log_e (t)$ in long time regime at different temperatures at $\gamma = 4.52$ (Scale arbitrary). 57

Figure 3.6 Comparative variation of mean square displacement vs time at 1.0 KT and 100.0 KT at $\gamma = 4.52$, for "classical" and quantum cases (Scale arbitrary). 58

Figure 4.1 A schematic plot of the cubic potential $V(q) = \frac{1}{2} a q^2 - \frac{1}{3} b q^3$, used for calculation of the decay of the metastable state. ... 72

Figure 4.2 The variation of $\ln(k)$ vs inverse of scaled temperature $1/T \left(= \frac{\hbar \omega_0}{\kappa T} \right)$ for quantum Smoluchowski rate constant k well below the saturation temperature. (Scale arbitrary). ... 75
Figure 6.1 Variation of normalised c-number noise correlation function $C(t)$ with time for different parameter sets of γ_0 and τ_c and T (dots represent the analytical variation based on Eq. (6.1); lines represent numerical fitting using Eq. (6.3)) (Scale arbitrary). 101

Figure 6.2 Plot of probability density function with respect to position for $\tau_c = 1.0$ at (a) $\gamma_0 = 0.01$ and (b) $\gamma_0 = 10.0$. (Scale arbitrary) 103

Figure 6.3 Plot of probability density function with respect to position for $\tau_c = 5.0$ at (a) $\gamma_0 = 0.01$ and (b) $\gamma_0 = 10.0$. (Scale arbitrary) 104

Figure 6.4 Kramers turnover in a spin bath. Variation of barrier crossing rates with γ_0 for three different temperatures for (a) $\tau_c = 1.0$ and (b) $\tau_c = 5.0$ (Scale arbitrary). 105

Figure 6.5 A comparison between numerical (dots) and analytical (lines) Arrhenius plots for $\tau_c = 1.0$ and several values of γ_0. (Scale arbitrary). The inset highlights the high temperature regime. 106

Figure 6.6 (a) Contour plot of barrier crossing rate for $\tau_c = 1.0$. (b) Variation of barrier crossing rate with log(γ_0). (c) Variation of barrier crossing rate with temperature. (Scale arbitrary). 106

Figure 6.7 (a) Contour plot of barrier crossing rate for $\tau_c = 5.0$. (b) Variation of barrier crossing rate with log(γ_0). (c) Variation of barrier crossing rate with temperature. (Scale arbitrary). 107
Figure 7.1 \(\omega^2 - \omega_0^2 \) and \(\sum_k \frac{e_k^2}{\omega_k^2} \left(\frac{\omega^2}{\omega_k^2 - \omega^2} \right) \) are plotted as functions of \(\omega^2 \). The abscissa of the points of intersection of both graphs give the solutions \(\bar{\omega}_k \) \(\kappa(\omega) = 0 \) in Eq. (7.20). ... 118

Figure 7.2 (□) and (o) are experimental results of specific heat for 20Å and 60Å CoO layers, respectively [15]. \(\gamma_0/\omega_0 \) ratio used in our calculations are 1.85 and 2.1 for 20Å and 60Å layers, respectively (Scale arbitrary). ... 124