BIBLIOGRAPHY

Agarwal, R.P.

Agarwal R.P. and [1] Generalized basic hypergeometric

Agarwal, R.P.

[1] Selected topics in special functions: polybasic hypergeometric series by A. Verma (p. 77-92)

Andrews, G.E. and Berndt, B.C.

Andrews, G.E.

Andrews, G.E.

Askey, R.

Appel, P. And et Kampe De Feriet, J.

Askey, R.

Askey, R. and Wilson, J.

Bailey, W.N.

identities and some evaluation
there from, Advan. Stud. Contemp.

Carlitz, L.

[1] Some inverse relations, Duke

Mantshofte fur Mathematik 73

[4] Some generating functions of
523-529.

Cayley, A.

[1] On a theorem relating to
hypergeometric series, Phil. Mag.
(A) 16 1885, 356-57.

Carlitz, L. and

Srivastava, H.M.

[1] Some hypergeometric polynomials
associated with the Lauricella
functions F_D of several variables II
vesnik 13 (28) (1976), 134-152.

Chatterjea, S.K.

[1] A bilateral functions for the
ultraspherical polynomials, Pacific,

Chaudy, T.W.

Das M.K.:

Denis, R.Y.

[3] “On certain expansions of basic
hypergeometric functions with application in number theory” Ganita 34(1983), 53-56.

Denis, R.Y., Singh, S.N.
And Sulata, D.

Denis, R.Y., Singh, S. N.
and Singh, S. P.

[1] "Certain transformation and summation formulae for basic hypergeometric series of and two variables". (to appear)

[2] On certain basic identities A Cayley-Orr Type involving two variables communicated for.

Exton, H. [1] q-Hypergeometric functions and

[2] “Summation formulas for basic

Gauss, C.F. [1] Disquisitiones generales Circa Seriem infinitam
\[1 + \frac{\alpha \beta x^r}{1.2.3.\ldots r(r+1)} + \frac{\alpha(\alpha+1)\beta(\beta+1)x^3}{1.2.3.\ldots r(r+1)(r+2)} + \text{etc.}, \]

Gessel, I. and Stannton, D. [1] Another family of q-lagrange inversion formulas, Rocky Mountain J. math. 16 (1986), 373-384.

Gould, H.W. [1] Operational formulas connected with two generation of Hermit

Horn, J. [1] “Oeber die convergenz der
Henrici, P. [1]

Jackson, F.H. [1]

[2] A generalization of the function $\Gamma(n)$ and x^n, proc. Roy. Soc. London 74 (1904), 64-72.

<table>
<thead>
<tr>
<th>Name</th>
<th>Reference CITATION</th>
<th>Note</th>
</tr>
</thead>
</table>

Math. Z. 71 (1959), 143-145.

[8] "Integration of E-functions with
respect to their parameters”, Proc.
Glasgow Math. Assoc. 4(1959),84-
87.

[9] “Application of the multiplication
formulae for the gamma function
to E-function series”, Proc.
Glasgow Math Assoc. 4,3 (1960),
114-118.

[10] Fourier series for E-function,

MacRobert, T.M. and Ragab, F.M.

[1] “E-function series whose sums are
constant”, Math. Z., Vol. 78

Mc Bridge, F.B.

[1] Obtaining generating functions
Springer Tracts in Natural
Philosophy. Vol. 21 Springer-
Verlag, New York, Heidelberg
and Berlin (1971).

Meijer, C.S.

[1] “Ueber Whittakersche bezw,
Besselsche funktionen und deren
produkte”, Nieuw Arch. Wiskunde,
(2) 18 (1936), 10-39.

[5] Ibid., 44(1941), 435-441 and 590-605.

Meixner, J.

Moak, D.S.

Nassarallah and Rahman, M.

[2] “q-Analogue of Appell’s F₁-

Orr. Mef.

Patil, K.R.

and Thakare, N.K.

Prabhakar, T.R.

Ragab, F.M.

Rahman, M.

[1] Reproducing Kernels and bilinear
Rai, P.N. and Singh, S.N.

Rainville, E.D.

Ramanujan, S.

Rastogi, P.

```


[1] Certain generalized basic
```


hypergeometric transformation and identities of Rogers-Ramanujan type, Ph.D. Thesis (1984), University of Lucknow.

|--------------------|---|
| Shukla, H.S. | [1] "Certain investigations in the field
Singh, R.P. [1] Some Polynomials related to the
generalized Laguerre polynomials
Rev. Mat. Hisp. Amer. 28 (1968),
128-136.

Singh, S.N. [1]“Certain transformation of
abnormal basic hypergeometric
functions”, Ramanujan
International Symposium on
analysis, 1987, Pune. Editor : N.K.
Thakare- 303-309.

[2]“An expansion involving basic
hypergeometric functions”, J.

[3]“Certain new partition theorems”,

Singh, R.P.

[2] Certain theorems of Cayley-Orr
type bilateral hypergeometric
series, Quart. J. Math.

of basic hypergeometric functions,
Ph.D. Thesis (1993), Purvanchal,
University, Jaunpur.
Accepted for publication in Proc. National Academy of Sciences.

[8] "Basic Hypergeometric series and continued fractions”, The Maths

Singh, S.P. [1] "Certain integrals involving basic hypergeometric functions" Accepted for publication in Mathematics Student.

Singhal, J.P. and Srivastana, H.M.

Singhal, R.P.

[2] A transformation formula for
double hypergeometric series, Rorky Mountain J. Math, 3 (1973), 377-381.

And Jain, V.K.

and Karlsson

and Lavoie, J.L.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Reference Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>and Pathan, M.A.</td>
<td></td>
</tr>
<tr>
<td>and Manocha, H.L.</td>
<td></td>
</tr>
<tr>
<td>Shukla, H.S.</td>
<td></td>
</tr>
</tbody>
</table>

[2] Les series Heine’s superiures o les series da la forme..., Annali di

[3] "Some summation formulae for
Non terminating basic
hypergeometric series". Siam, J.
646 - 655.

[4] "Transformation between basic
hypergeometric series of different
bases and Identities of Rogers-
Ramanujan Type", J. of
Mathematical Analysis and
application, Vol. 76 (1980), 230-
269.

[5] "q-Analogue of a transformation of
Whipple", Rocky M.J. of Math., 13

[6] "Certain summation formulae for
q-series", J. Indian Mathematical

Certain transformation of product
of basic bilateral hypergeometric
series, India J. Math. 10 (1968),
59-71.
Watson, G.N.

Whipple, F.J.W.
