CONTENTS

1. **INTRODUCTION**

2. **REVIEW OF LITERATURE**
 2.1. Prostatic growth and polypeptide growth factor
 2.2. Prostatic growth and oncogene activation
 2.3. Prostate markers and prostatic growth disorders

3. **MATERIALS AND METHODS**
 3.1.1. Chemicals and reagents
 3.1.2. Plastic wares
 3.1.3. Cell lines
 3.1.4. Antibodies
 3.1.5. Human prostatic tissues
 3.2. Immunohistochemistry
 3.2.1. Avidin-biotin-complex (ABC) peroxidase method
 3.2.2. Peroxidase anti-peroxidase (PAP) method
 3.2.3. Indirect peroxidase method
 3.2.4. Scoring method
 3.3.1. PSA assay
 3.3.2. PSAP assay
 3.3.3. Serum testosterone assay
 3.4. Purification of prostate specific antigen
 3.4.1. Ion exchange chromatography
 3.4.2. Gel filtration
 3.4.3. Western blot of fractions
3.5.1. Raising of anti-PSA antibodies 26
3.5.2. Purification of antibodies 26
3.5.3. Western blot of tissue homogenates for PSA 27
3.5.4. Screening of human tissues for PSA 27
3.6. Immunocytochemistry of cells for PSA, c-neu protein and LHRH 28
3.7. Studies with anti-c-neu antibody (4D5) on proliferation of prostate carcinoma cells 29
3.8. Studies with anti-PSA antibodies on the growth of prostatic carcinoma cells 29
3.8.1.1. a) 3H thymidine incorporation assay 29
3.8.1.2. b) Non-radioactive cell proliferation assay 30
3.8.2. In vivo studies 31
3.8.2.1. Experimental animals 31
3.8.2.2. Implantation of cells for tumour growth 32
3.8.3. Inhibition of tumour growth 32
3.8.4. Tumoricidal effect on growing tumours 33
3.8.5. Histology of tumour 33
3.9. Studies with anti-LHRH antibody on the growth of prostatic carcinoma cells 33

4. RESULTS 35
4.1. Survey of the growth factors, receptor and oncogene in prostatic hyperplasia and carcinoma patients 35
4.2. Immunohistochemical reactivity with various antibodies 36
4.2.1. Anti-TGF-α 36
4.2.2. Anti-EGFR 37
4.2.3. Anti-PSAP 37
4.2.4. Other antibodies 38
4.2.5. Anti-c-neu 38