List of Tables

3.1 Hopping integrals, O-O distance in exchange path and exchange interactions (in meV) are listed here. ... 72

3.2 The relative energies (in meV) of eight ordered spin states are listed here. ... 75

4.1 Hopping integrals (t_i) and exchange interactions (J_i) (in meV) for Ba$_3$Cu$_3$Sc$_4$O$_{12}$ are tabulated here. .. 92

4.2 Hopping integrals (t_i) and exchange interactions (J_i) (in meV) for Ba$_3$Cu$_3$In$_4$O$_{12}$ are listed here. .. 92

4.3 The distance between magnetic ions, hopping parameters between various Cu ions within the Kagome plane, exchange paths, obtained from NMTO down-folding method are listed here. .. 104

4.4 Hopping parameters (in meV) for inter Kagome plane, obtained from NMTO downfolding method are listed here. 106

5.1 The relative energies, magnetic moments, band gap for different magnetic configurations are listed here. .. 119

5.2 Exchange interactions along different exchange paths obtained from NMTO downfolding method and energy method (Ref. 16) have been tabulated here. ... 123

5.3 The distances between the magnetic atoms in the experimental structure and the change in distance upon relaxation within different magnetic configurations have been listed here. $+-(-)$ sign indicate increment (decrement) of the distance. ... 125

5.4 Calculated electric polarization with AFM1 and AFM2 magnetic configurations with different value of Coulomb interaction parameter U for the relaxed structure are listed here. ... 125
6.1 Structural informations taken from Ref. 10 ... 133
6.2 Relative energies per three f.u (in meV) for AgFeO$_2$ determined from LSDA+U calculations. .. 139
6.3 Symmetric exchange interactions (in meV) for AgFeO$_2$ and CuFeO$_2$ are tabulated here. The exchange interactions for CuFeO$_2$ inside the parentheses, are adapted from Ref. 17 .. 139
6.4 The energy differences between calculations with spin quantization chosen along different directions within LSDA+U+SOC calculations. 141
6.5 The three components of spin (in μ_B) for one Fe-O layer in AFM2 magnetic configuration for AgFeO$_2$ determined from LSDA+U calculations ($U = 3$ and $J = 1$ eV). .. 143
6.6 The relative energies (in meV) for AFM1, AFM2, and FM magnetic configurations within LSDA+U and LSDA+U+SOC calculations. ($U = 3$ and $J = 1$ eV) .. 145
6.7 The bond length between the magnetic atoms in experimental structure and change in bond length in relaxed structures. (change in bond length $-$Ve means the shortening of bond length after relaxation) 145
6.8 Calculated Polarization in various magnetic structures 146

A.1 The hopping parameters (in meV) obtained from OMTA-NMTO downfolding method are tabulated here. .. 159