List of Figures

Figure 1a: Genomic Organization of Hepatitis C Virus.

Figure 1b: World wide distribution of HCV genotypes.

Figure 2: Hepatitis C Virus Primers and their positions in the genome.

Figure 3: Map of the cloning vector pCR 2.1 TOPO.

Figure 4: Estimate of total number of screened individuals and HCV Seropositive and RNA positive among different population groups in the present study.

Figure 5: Agarose Gel Electrophoresis of the HCV RNA Positive strains (210 bp amplicons).

Figure 6: Agarose Gel Electrophoresis of type specific amplicons from HCV genome.

Figure 7: Age specific distribution of HCV genotypes.

Figure 8: Agarose gel electrophoresis of 210, 420, 1086 and 1400 bp amplicon from 5'-UTR, core and envelope1 and envelope2 region of the HCV genome for sequencing.

Figure 9: Phylogenetic analysis of the core-envelope gene of HCV strains randomly selected and sequenced to validate the RT-PCR typing.
Figure 10a: Multiple alignment of nucleotide sequences of core gene of untypeable HCV strains (showing genotype 3 specificity in BLAST) from liver disease cases and reference prototype sequence of genotype 3.

Figure 10b: Multiple alignment of nucleotide sequences of core gene of untypeable HCV strains (showing genotype 3 specificity in BLAST) from liver disease cases and reference prototype sequence of genotype 3.

Figure 10c: Multiple alignment of nucleotide sequences of core gene of untypeable HCV strains (NB56) showing maximum homology to reference prototype sequence of genotype 6b.

Figure 10d: Multiple alignment of nucleotide sequences of core gene of untypeable HCV strains (NB74) showing maximum homology to reference prototype sequence of genotype 1a and 6b, respectively, from liver disease cases.

Figure 10e: Multiple alignment of nucleotide sequences of core gene of untypeable HCV strains (showing genotype 3b specificity in BLAST) from liver disease cases and reference prototype sequence of genotype 3b.

Figure 11: Phylogenetic analysis of the core-envelope gene of untypeable HCV strains obtained from liver disease patients to assign genotype.
Figure 12: Quasispecies Evolution: Signature mutation pattern in Chronically Infected Patients. Figure 13: Non-Synonymous Mutations in the Major Immunodominant Epitopes (Core-HVR-1 Domain) of HCV in Chronically Infected Patients.

Figure 14: Normalized nucleotide sequence entropy within the HVR-1 quasispecies in the patients who had viral eradication (responders [R]) and in those who did not (nonresponders [NR]); $P < 0.05$.

Figure 15: Multiple alignment of nucleotide sequences in the 5'-UTR, core and E1/E2 region of carcinoma strains (NBHCC2,4,8 & 15) and reference prototype sequence (HCV-J).

Figure 16: Changes in Hydropathicity Profile of Core Protein of Hepatocellular Carcinoma Strains due to Non-synonymous Mutations.

Figure 17: Multiple alignment of amino acid sequences of carcinoma strains (NBHCC2,4,8 & 15) and reference prototype sequence (HCV-J & HCVT142).

Figure 18: Multiple alignment of nucleotide sequences of HCV strains from asymptomatic cases and reference prototype sequence of all the genotypes.

Figure 19: Phylogenetic analysis of core gene of HCV strains from asymptomatic cases to assign genotype.

Figure 20: Estimates of total number of patients screened and HCV seropositive and RNA positive subjects throughout the period of study.