List of Figures

Figure 2.1. Schematic diagram of dead-end UF unit
Figure 2.2. Schematic diagram of continuous/ single stirred UF module
Figure 2.3. Schematic diagram of Plate and Frame membrane module
Figure 2.4. Schematic diagram of hollow fiber module (shell side feed)
Figure 2.5. Schematic diagram of spiral wound membrane module
Figure 2.6. Schematic of a rotating cylindrical filter for plasma collection from donors
Figure 2.7. Schematic diagram of Rotating Disk Membrane (RDM) module
Figure 2.8. Diagram of Multi-Shaft Disk (MSD) Module
Figure 2.9. Schematic diagram of Vibratory shear-enhanced processing Module (VSEP)
Figure 3.1. Year-wise graphical presentation on the progress of the whole research activity
Figure 4.1. Schematic diagram of the Spinning Basket Module (insert showing the photograph of the spinning basket)
Figure 4.2. Schematic diagram of the complete filtration bench
Figure 4.3. Variation of the unsteady permeate flux with time under the condition of different TMP for the first three normal runs
Figure 4.4. Variation of steady permeate flux (as obtained at the end of first normal run) with TMP for different rotational speed (Ω)
Figure 4.5. Variation of regenerated permeate flux (as obtained after each cleaning runs) with the cleaning run number for normal runs conducted at different TMP
Figure 4.6. Variation of the unsteady permeate flux with time under the condition of different feed concentration (C₀) for the first three normal runs
Figure 4.7. Variation of the unsteady permeate flux with time under the condition of different rotational speed (Ω) for the first three normal runs
Figure 4.8. Variation of regenerated permeate flux (as obtained after each cleaning runs) with the cleaning run number for normal runs conducted at different rotational speed (Ω)
Figure 4.9. Variation of steady state observed rejection (R_{obs}) with TMP at different rotational speed (Ω) (insert showing the same variation with (Ω) at different TMP)
Figure 4.10. Variation of average power consumption rate (Ė) with rotational speed (Ω) at different TMP (insert showing the same variation with TMP at different (Ω))
Figure 4.11. Steady permeate flux (as obtained at the end of first normal run) at different TMP for (i) Single stirred (ii) RDM (membrane speed= 62.5 rad s$^{-1}$) and (iii) SBM module

Figure 4.12. Steady permeate flux (as obtained at the end of first normal run) at different (Ω) for (i) Single stirred (ii) RDM (membrane speed= 62.5 rad s$^{-1}$) and (iii) SBM module

Figure 5.1. Velocity profile for (a) Ω = 10.47 and (b) Ω = 41.9 rad s$^{-1}$ under fixed condition of TMP (=98 kPa)

Figure 5.2. Variation of the membrane shear stress with the radial distance at Ω = 10.47 and 41.9 rad s$^{-1}$ (inset showing the variations of turbulent kinetic energy generation rate (G_k) on the membrane surface)

Figure 5.3. Dynamic pressure contours on the basket surface during cleaning runs conducted at (a) Ω = 10.47 and (b) 41.9 rad s$^{-1}$ (inset showing the variation of total pressure (gauge) on the membrane as well as the solid surface of the basket)

Figure 5.4. Variation of the unsteady permeate flux with time under different TMP for the first three normal runs

Figure 5.5. Variation of steady permeate flux (as obtained at the end of first normal run) with TMP for different rotational speed (Ω)

Figure 5.6. Variation of regenerated permeate flux (as obtained after each cleaning runs) with the cleaning run number for normal runs conducted at different TMP

Figure 5.7. Variation of the unsteady permeate flux with time under different feed concentration (C_0) for the first three normal runs

Figure 5.8. Variation of the unsteady permeate flux with time different rotational speed (Ω) for the first three normal runs

Figure 5.9. Variation of regenerated permeate flux (as obtained after each cleaning runs) with the cleaning run number for normal runs conducted at different rotational speed (Ω)

Figure 5.10. Variation of steady state observed rejection (R_{obs}) with TMP at different rotational speed (Ω) (insert showing the same variation with Ω at different TMP)

Figure 5.11. Variation of specific energy usage (e) with rotational speed (Ω) at different TMP (insert showing the same variation with TMP at different Ω)
Figure 6.1. Schematic diagram of the Spinning Basket Module (inset showing the photograph of the spinning basket)

Figure 6.2. Schematic diagram of the complete filtration bench

Figure 6.3. Velocity field (m s\(^{-1}\)) on cylindrical planes at different radial slice (r = 0.03 m, 0.08 m and 0.11 m) and in the default flow domain of the module under different rotational speeds (\(\Omega = 20.95\) rad s\(^{-1}\) and 52.36 rad s\(^{-1}\))

Figure 6.4. Radial distribution of shear stress on the membrane surface during normal run conducted at different \(\Omega\) (inset showing the same distribution of dynamic pressure)

Figure 6.5. Dynamic pressure contour on the basket surface during a cleaning run (inset showing the variation of total pressure on the membrane as well as the solid surface of the basket)

Figure 6.6. Variation of the unsteady permeate flux with time under the condition of different TMP for the first two normal runs

Figure 6.7. Variation of regenerated permeate flux (as obtained after each cleaning runs) with the cleaning run number for normal runs conducted at different TMP

Figure 6.8. Variation of the unsteady permeate flux with time under the condition of different feed concentration\((C_o)\) for the first two normal runs

Figure 6.9. Variation of the unsteady permeate flux with time under the condition of different rotational speed\((\Omega)\) for the first three normal runs

Figure 6.10. Variation of steady state observed rejection\((R_{obs})\) with TMP at different rotational speed\((\Omega)\) (inset showing the same variation with \(\Omega\) at different TMP)

Figure 6.11. Variation of average energy consumption rate\((\dot{E})\) with rotational speed\((\Omega)\) at different TMP (inset showing the same variation with TMP at different \(\Omega\))

Figure 6.12. Steady permeate flux (as obtained at the end of first normal run) at different TMP for (i) Single stirred (ii) RDM (membrane speed= 62.5 rad s\(^{-1}\)) and (iii) SBM module (inset showing the same at different \(\Omega\))

Figure 7.1. Schematic of the Spinning Basket Module (insert showing the photograph of the spinning basket)

Figure 7.2. Schematic of the complete filtration bench
Figure 7.3. Variation of the unsteady permeate flux with time under the condition of different TMP for 50 kDa and 100 kDa membrane

Figure 7.4. Variation of the unsteady permeate flux with time under the condition of different rotational speed (Ω) for 50 kDa and 100 kDa membrane

Figure 7.5. Variation of steady state observed rejection (R_{obs}) with TMP at different rotational speed (Ω) for 50 kDa and 100 kDa MWCO (insert showing the same variation with Ω at different TMP)

Figure 7.6. Variation of average power consumption rate (\mathcal{E}) with rotational speed (Ω) at different TMP (insert showing the same variation with TMP at different Ω)

Figure 7.7. Steady permeate flux (as obtained at the end of first normal run) at different TMP for (i) Single stirred (ii) RDM (membrane speed= 62.5 rad s$^{-1}$) and (iii) SBM module for 50 kDa molecular weight cut-off membrane (insert showing the same with 100 kDa MWCO membrane)

Figure 7.8. Steady permeate flux (as obtained at the end of first normal run) at different Ω for (i) Single stirred (ii) RDM (membrane speed= 62.5 rad s$^{-1}$) and (iii) SBM module for 50 kDa molecular weight cut-off membrane (insert showing the same with 100 kDa MWCO membrane)

Figure 8.1(a). Radial flow membrane module (1: Perforated support of diameter 0.046 m over which membrane will be fixed; 2: Permeate collection point; 3: Plate type distributor of diameter 0.025 m for feed inlet to the module; 4: Retentate outlet holes of having diameter 0.004 m; 5: Base of diameter 0.028 m for anchoring the distributor. The clearance between ‘5’ and ‘3’ is 0.001 m; Effective diameter of the membrane: 0.042 m)

Figure 8.1(b). Turbine flow membrane module (1: Perforated support of diameter 0.046 m over which membrane will be fixed; 3: Blades of width (radial direction) 0.04 m and height 0.01 m; 4: Feed inlet opening 5: Retentate outlet opening)

Figure 8.1(c). Schematic representation of Cross-flow membrane module

Figure 8.2. Schematic diagram of membrane setup
Figure 8.3(a)-(b). (a) Schematic presentation of the fluid flow nature within the RFMM membrane module. (b) Schematic presentation of the fluid flow nature within the TFMM membrane module.

Figure 8.4. Contour plots of TWAF \((\langle J \rangle \times 10^8 \text{ m}^3 \text{ m}^{-2} \text{s}^{-1})\) for the variations in feed concentration and TMP in RFMM equipped with PES membrane.

Figure 8.5. Contour plots of TWAF \((\langle J \rangle \times 10^8 \text{ m}^3 \text{ m}^{-2} \text{s}^{-1})\) for the variations in feed concentration and TMP in RFMM equipped with PS membrane.

Figure 8.6. Contour plots of TWAF \((\langle J \rangle \times 10^8 \text{ m}^3 \text{ m}^{-2} \text{s}^{-1})\) for the variations in feed concentration and TMP in TFMM equipped with PES membrane.

Figure 8.7. Contour plots of TWAF \((\langle J \rangle \times 10^8 \text{ m}^3 \text{ m}^{-2} \text{s}^{-1})\) for the variations in feed concentration and TMP in TFMM equipped with PS membrane.

Figure 8.8. Power consumption by the pump in RFMM achieve a high steady state permeate flux \((J_s \times 10^8 \text{ m}^3 \text{ m}^{-2} \text{s}^{-1})\) as TFMM \((\Delta P_{\text{Actual}}; O: \Delta P_{\text{Req}})\).

Figure 8.9. Variation of permeate flux \(x 10^8 \text{ (m}^3 \text{ m}^{-2} \text{s}^{-1})\) with time at 0.2 MPa and with 20 kg m\(^{-3}\) feed concentration for RFMM, TFMM and Cross-flow membrane module equipped with PES and PS membrane (■: RFMM equipped with PES membrane; ●: TFMM equipped PES membrane; ▲: Cross-flow membrane module equipped with PES membrane; –■–: RFMM equipped with PS membrane; –●–: TFMM equipped PS membrane; –▲–: Cross-flow membrane module equipped with PS membrane).

Figure 8.10. Comparative water flux percentage regain for subsequent experiments with the same membrane in each module (□: PES membrane fitted in RFMM; ■: PS membrane fitted in RFMM; □: PES membrane fitted in TFMM; □: PS membrane fitted in TFMM).

Figure 9.1. Schematic of the Intermeshed Spinning Basket Module (insert showing the photograph of the spinning basket).

Figure 9.2. Schematic of the complete filtration bench.

Figure 9.3. Variations of unsteady state permeate flux with time for different TMP.

Figure 9.4. Variations of unsteady state permeate flux for different rotational speed (\(\Omega\)).

Figure 9.5. Variations of regenerated flux after every cleaning cycle for different TMP.

Figure 9.6. Variations of regenerated flux after every cleaning cycle for different \(\Omega\).
Figure 9.7. Variation of steady state observed rejection (R_{obs}) with TMP at different rotational speed (Ω) (insert showing the same variation with Ω at different TMP)

Figure 9.8. Contour plots of time weighted flux (TWF) with trans-membrane pressure (TMP) and feed concentration

Figure 9.9. Contour plots of time weighted flux (TWF) with TMP and Ω

Figure 9.10. Variation of average power consumption of the module with rotational speed (Ω) and TMP

List of Tables

Table 1.1. The properties of the typical membrane filtration process

Table 4.1. Comparison of the proposed SBM module with the reported shear enhanced membrane modules in terms of power consumption

Table 4.2. Comparison of the proposed SBM module with the reported cross flow units in terms of permeate flux

Table 5.1. Comparison of the SBM with the other reported dynamic shear enhanced modules in terms of power consumption and permeate flux

Table 7.1. Comparison of the proposed SBM module with the reported cross flow units in terms of permeate flux

Table 8.1. ANOVA test for the effect on TWAF ($\langle J \rangle \times 10^6 \text{ m}^3 \text{ m}^{-2} \text{ s}^{-1}$) due to the variations in membrane and membrane modules

DF: Degrees of freedom; SS: Sum squared error; MS: Mean squared error; F: F-value; P: Probability of making type-I error

Table 8.2. Mechanical power consumption in RFMM and TFMM compared to other high shear membrane modules proposed earlier in order to attain a moderate steady state permeate flux during ultrafiltration