TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xxviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td></td>
<td>xxxvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 GREEN CHEMISTRY 1

1.2 MOTIVATION OF WORK 3

1.3 H-POINT STANDARD ADDITION METHOD 5

1.3.1 Theoretical Background 5

1.3.2 Requirements for applying HPSAM – Binary Mixtures 5

1.3.3 Requirements for applying HPSAM – Ternary Mixtures 7

1.3.4 Wavelength Selection 8

1.4 CHEMOMETRICS ASSISTED SPECTROPHOTOMETRIC TECHNIQUES 8

1.4.1 Theoretical Background 9

1.4.1.1 Principal components regression (PCR) 9
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1.2</td>
<td>Partial least-squares (PLS)</td>
<td>9</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Calibration matrix and selection of spectral region for PLS and PCR</td>
<td>10</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Selection of optimum number of factors</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)</td>
<td>12</td>
</tr>
<tr>
<td>1.5.1</td>
<td>HPLC is characterized by</td>
<td>12</td>
</tr>
<tr>
<td>1.5.2</td>
<td>The following is the suggested method development timeline for a typical HPLC method</td>
<td>12</td>
</tr>
<tr>
<td>1.5.2.1</td>
<td>Resolution (R_s)</td>
<td>13</td>
</tr>
<tr>
<td>1.5.2.2</td>
<td>Limit of Detection and Quantitation (LOD & LOQ)</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2.3</td>
<td>Accuracy</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2.4</td>
<td>Precision</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2.5</td>
<td>Specificity</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2.6</td>
<td>System suitability tests</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY (HPTLC)</td>
<td>15</td>
</tr>
<tr>
<td>1.7</td>
<td>OBJECTIVES OF THE WORK</td>
<td>16</td>
</tr>
<tr>
<td>1.8</td>
<td>SELECTION OF DRUGS</td>
<td>17</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Drugs used for monotherapy</td>
<td>17</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Combinations of two antihypertensive drugs</td>
<td>17</td>
</tr>
<tr>
<td>1.8.3</td>
<td>Useful Combinations of three antihypertensive drugs</td>
<td>18</td>
</tr>
<tr>
<td>1.8.4</td>
<td>Drugs selected for the study from their combined dosage forms</td>
<td>18</td>
</tr>
</tbody>
</table>
2 REVIEW OF LITERATURE

2.1 AMLODIPINE BESYLATE 19
2.2 HYDROCHLOROTHIAZIDE 20
2.3 IRBESARTAN 21
2.4 LOSARTAN 22
2.5 MANIDIPINE DIHYDROCHLORIDE 22
2.6 RAMIPRIL 23
2.7 TELMISARTAN 24
2.8 TRANDOLAPRIL 24
2.9 VALSARTAN 25
2.10 VERAPAMIL 25

3 H-POINT STANDARD ADDITION METHOD

3.1 EXPERIMENTAL PROCEDURE 26
3.1.1 Instrument Employed 26
3.1.2 Chemicals Used 26
3.1.3 Reference Standards 26
3.1.4 Preparation of Stock Solutions 27
3.1.5 Preparation of samples for Linearity 27
3.1.6 Preparation of Synthetic mixtures 27
3.1.7 Preparation of commercial samples 27

3.2 RESULTS AND DISCUSSION 28
3.2.1 Binary Mixture 1 – Irbesartan (IRB) and Hydrochlorothiazide (HCZ) 28
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>Binary Mixture 2 – Valsartan (VAL) and Hydrochlorothiazide (HCZ)</td>
<td>34</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Ternary Mixture 1 – Irbesartan (IRB), Hydrochlorothiazide (HCZ) and Telmisartan (TEL)</td>
<td>40</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Ternary Mixture 2 – Ramipril (RAM), Hydrochlorothiazide (HCZ) and Telmisartan (TEL)</td>
<td>47</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Ternary Mixture 3 – Losartan Potassium, Hydrochlorothiazide and Amlodipine Besylate</td>
<td>54</td>
</tr>
</tbody>
</table>

4. CHEMOMETRICS ASSISTED QUANTITATIVE ANALYSIS

4.1 EXPERIMENTAL PROCEDURE 62
4.2 RESULTS AND DISCUSSION 64

4.2.1 Binary mixture 1 – Irbesartan (IRB) and Hydrochlorothiazide (HCZ) 64
4.2.2 Binary Mixture 2 – Valsartan (VAL) and Hydrochlorothiazide (HCZ) 82
4.2.3 Binary Mixture 3 – Telmisartan (TEL) and Hydrochlorothiazide (HCZ) 100
4.2.4 Ternary Mixture 1 – Irbesartan (IRB), Hydrochlorothiazide (HCZ) and Ramipril (RAM) 116
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.5</td>
<td>Ternary Mixture 2– Valsartan (VAL), Hydrochlorothiazide (HCZ) and Ramipril (RAM)</td>
<td>137</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Ternary Mixture 3– Telmisartan (TEL), Hydrochlorothiazide (HCZ) and Ramipril (RAM)</td>
<td>158</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Ternary Mixture 4 – Trandalopril (TRA), Verapamil (VER) and Manidipine (MAN)</td>
<td>179</td>
</tr>
<tr>
<td>4.2.8</td>
<td>Ternary Mixture 5 – Losartan (LOS), Hydrochlorothiazide (HCZ) and Amlodipine besylate (AML)</td>
<td>200</td>
</tr>
</tbody>
</table>

5 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

5.1 EXPERIMENTAL PROCEDURE

5.1.1 Instrument Employed

5.1.2 Column used

5.1.3 Chemicals used

5.1.4 Reference Standards

5.1.5 Preparation of Mobile Phase

5.1.6 Preparation of stock solutions

5.1.7 Preparation of samples for linearity

5.1.8 Assay sample preparation

5.1.9 Preparation of Plasma samples

5.2 RESULTS AND DISCUSSION

5.2.1 Method development and optimization
CHAPTER NO.	TITLE	PAGE NO
5.2.1.1 | Wavelength selection | 224
5.2.1.2 | Mobile phase optimization | 225
5.2.2 | Validation of the method | 226
5.2.2.1 | System suitability tests | 226
5.2.2.2 | Linearity | 227
5.2.2.3 | Accuracy and Precision | 232
5.2.2.4 | Specificity | 232
5.2.2.5 | Application to Pharmaceutical products | 234
5.2.2.6 | Application to plasma samples | 237
5.3 | FEATURES OF HPLC METHOD | 237

6 HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY | 238
6.1 | EXPERIMENTAL PROCEDURE | 238
6.1.1 | Thin Layer Chromatography | 238
6.1.2 | Materials and reagents | 238
6.1.3 | Preparation of standard solutions | 239
6.1.4 | Sample Preparation | 239
6.2 | RESULTS AND DISCUSSION | 239
6.2.1 | Mobile phase optimization | 239
6.2.2 | Wavelength selection | 242
6.3 | VALIDATION OF THE METHOD | 243
6.3.1 | Linearity | 243
6.3.2 | Sensitivity | 245
6.3.3 | Precision | 245
6.3.4 | Accuracy | 245
CHAPTER NO.	TITLE	PAGE NO
6.3.5 | Specificity | 247
6.3.6 | Repeatability | 247
6.3.7 | Assay of pharmaceutical preparations | 248

7 | SUMMARY AND CONCLUSION | 251
7.1 | ANTIHYPERTENSIVES | 251
7.2 | SPECTROPHOTOMETRIC METHODS | 251
7.2.1 | HPSAM for Binary Mixtures | 252
7.2.2 | HPSAM for ternary mixtures | 253
7.2.3 | Chemometric Methods | 254
7.3 | CHROMATOGRAPHIC METHODS | 256
7.3.1 | High Performance Liquid Chromatography (HPLC) | 257
7.3.2 | High Performance Thin Layer Chromatography (HPTLC) | 258
7.4 | CONCLUSION | 259

REFERENCES | 261
APPENDIX | 289
LIST OF PUBLICATIONS | 291
VITAE | 293