TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE SHEET</td>
<td>(i)</td>
</tr>
<tr>
<td>LIST OF PUBLICATION OUT OF THE RESEARCH WORK</td>
<td>(i)</td>
</tr>
<tr>
<td>CERTIFICATE FROM SUPERVISORS</td>
<td>(iii)</td>
</tr>
<tr>
<td>PREFACE</td>
<td>(iv)</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>(x)</td>
</tr>
<tr>
<td>VITA</td>
<td>(xi)</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>(xii)</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>(xvii)</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>(xx)</td>
</tr>
</tbody>
</table>

1. INTRODUCTION
1.1 NEEDS OF ULTRASONIC MACHINING
 1.1.1 Application of Ultrasonic Technology
 1.1.2 Advantages of ultrasonic machining
1.2 FUNDAMENTAL OF ULTRASONIC MACHINING
1.3 PROCESS CHARACTERISTICS OF USM
1.4 REVIEW OF PAST RESEARCH
1.5 OBJECTIVES OF THE PRESENT RESEARCH

2. MECHANISM OF ULTRASONIC MACHINING
2.1 WORKING PRINCIPLE OF USM
2.2 MECHANISM OF MATERIAL REMOVAL IN USM
2.3 MODEL OF MATERIAL REMOVAL MECHANISM IN USM
2.4 BASIC INFLUENCES OF SOME PARAMETERS DURING USM PROCESS

3. DETAILS OF ULTRASONIC MACHINING EXPERIMENTAL SETUP
3.1 TOOL VIBRATION UNIT
 3.1.1 Converter
 3.1.2 Coupler
 3.1.3 Horn

(xii)
3.1.4 Details of Developed USM Tools
3.2 WORKPIECE HOLDING UNIT
 3.2.1 Magnetic base Worktable
 3.2.2 Workpiece Holding Plate
3.3 ABRASIVE SLURRY RECIRCULATION SYSTEM
3.4 TOOL FEEDING AND CONTROL UNIT
3.5 POWER SUPPLY UNIT
3.6 SPECIFICATION OF USM (Sonic-Mill AP-1000 Models)

EXPERIMENTAL SETUP

4. EXPERIMENTAL INVESTIGATION FOR OPTIMAL PARAMETRIC ANALYSIS OF USM PROCESS USING TAGUCHI METHOD

4.1 TAGUCHI METHOD BASED APPROACH FOR EXPERIMENTAL PLANNING
4.2 PLANNING FOR EXPERIMENTATION
 4.2.1 Properties of ceramic workpiece materials
 4.2.2 Properties of USM tool materials
 4.2.3 Properties of abrasive grits
4.3 PROCEDURE FOR MEASUREMENTS OF RESPONSES
4.4 PROCEDURE FOR EXPERIMENTATION
4.5 TAGUCHI METHODOLOGY BASED ANALYSIS FOR OPTIMAL COMBINATION OF PROCESS PARAMETERS ON ULTRASONIC MACHINING OF ALUMINA
 4.5.1 Signal to Noise ratio analysis
 4.5.2 Test of adequacy of the models of parametric combinations
4.6 OPTIMAL PARAMETRIC ANALYSIS FOR MAXIMISING MATERIAL REMOVAL RATE IN USM
 4.6.1 Determination of optimal process parametric combination
 4.6.2 Percentage contribution of process parameters on MRR
 4.6.3 Verification test for additive models
4.7 OPTIMAL PARAMETRIC ANALYSIS FOR MINIMISING SURFACE ROUGHNESS IN USM
 4.7.1 Determination of optimal process parametric combination
 4.7.2 Percentage contribution of process parameters on MRR
4.7.3 Verification test for additive models 86

4.8 OPTIMAL PARAMETRIC ANALYSIS FOR MINIMISING HOLE TAPER IN USM 87

4.8.1 Determination of optimal process parametric combination 87

4.8.2 Percentage contribution of process parameters on MRR 88

4.8.3 Verification test for additive models 89

4.9 OPTIMAL PARAMETRIC ANALYSIS FOR MINIMISING RADIAL OVERCUT IN USM 90

4.9.1 Determination of optimal process parametric combination 90

4.9.2 Percentage contribution of process parameters on MRR 90

4.9.3 Verification test for additive models 91

4.10 SINGLE OBJECTIVE OPTIMIZATION OF USM PROCESS PARAMETERS USING TAGUCHI METHOD 92

4.11 MULTI-OBJECTIVE OPTIMIZATION OF USM PROCESS PARAMETERS USING PRINCIPAL COMPONENT ANALYSIS 94

4.12 ANALYSIS ON THE INFLUENCE OF USM PROCESS PARAMETERS THROUGH MICROGRAPHS 102

4.13 OUTCOMES OF THE PRESENT SET OF TAGUCHI METHOD BASED INVESTIGATIONS 103

5. EXPERIMENTAL INVESTIGATION INTO THE INFLUENCE OF ULTRASONIC MACHINING PROCESS PARAMETERS USING RESPONSE SURFACE METHODOLOGY 115 – 134

5.1 FUNDAMENTALS OF RESPONSE SURFACE METHODOLOGY 115

5.2 PLANNING FOR EXPERIMENTATION ON ULTRASONIC DRILLING WITH HEXAGONAL TOOL 116

5.2.1 Procedure for measurements of responses for MRR and Ra 120

5.3 DEVELOPMENT OF EMPIRICAL MODELS FOR DETERMINING OPTIMAL COMBINATION OF PROCESS PARAMETERS FOR ULTRASONIC MACHINING 120

5.3.1 Mathematical modeling and adequacy test for material removal rate 120
5.3.2 Mathematical modeling and adequacy test for surface roughness

5.4 ANALYSIS OF PARAMETRIC INFLUENCES ON MRR AND SURFACE ROUGHNESS DURING USM BASED ON DEVELOPED MODELS

5.4.1 Influence of power rating and grit size on MRR

5.4.2 Influence of slurry flow rate and feed rate on MRR

5.4.3 Influence of grit size and slurry concentration on MRR

5.4.4 Influence of power rating and grit size on surface roughness

5.4.5 Influence of power rating and slurry concentration on surface roughness

5.4.6 Influence of grit size and feed rate on surface roughness

5.5 OPTIMIZATION OF ULTRASONIC MACHINING PROCESS PARAMETERS USING DEVELOPED MODELS

5.5.1 RSM based optimization of process parameters during ultrasonic machining of alumina

5.5.2 Multi-objective optimization of process parameters during ultrasonic machining of alumina

5.6 OUTCOMES OF THE PRESENT RESEARCH

6. EXPERIMENTAL INVESTIGATION INTO THE INFLUENCE OF USM PROCESS PARAMETERS ON PROFILE ACCURACY CRITERIA

6.1 EXPERIMENTAL PLANNING AND MEASUREMENT

6.1.1 Angular deviation at corner

6.1.2 Dimensional deviation across corners

6.1.3 Dimensional deviation across flats

6.2 INFLUENCES OF USM PROCESS PARAMETERS ON PROFILE ACCURACY

6.2.1 Influence of grit size on hexagonal hole profile

6.2.2 Influence of slurry concentration on hexagonal hole profile

6.2.3 Influence of power rating on hexagonal hole profile

6.2.4 Influence of feed rate on hexagonal hole profile
6.3 ANALYSIS OF PROFILE ACCURACY BASED ON MICROGRAPHS 141

6.4 RSM BASED MODELING AND ANALYSIS OF PARAMETRIC INFLUENCES FOR PROFILE ACCURACY 142
 6.4.1 Planning for Experimentation of ultrasonic drilling with Hexagonal tool 143
 6.4.2 Mathematical modeling of angular deviation 144
 6.4.3 Mathematical modeling of dimensional deviation across corners 146
 6.4.4 Mathematical modeling of dimensional deviation across flats 146

6.5 ANALYSIS FOR PROFILE ACCURACY BASED ON DEVELOPED MODELS 147
 6.5.1 Influence of process parameters on angular deviation 147
 6.5.2 Effects of process parameters on deviation across corners 148
 6.5.3 Influence of process parameters on deviation across flats 149

6.6 OPTIMIZATION OF ULTRASONIC MACHINING PARAMETERS USING DEVELOPED MODELS 150
 6.6.1 Single Objective Optimization of Profile Accuracy in USM 150
 6.6.2 Multi-objective Optimization of Profile Accuracy in USM 151

6.7 OUT COMES OF THE PRESENT RESEARCH 153

7. GENERAL CONCLUSIONS 167 – 174

BIBLIOGRPHY 175 - 182