Analysis of Variations in Wood Anatomy of Hardwood Tree Species Growing in and around Some Iron Ore Mines of Odisha

THESIS
SUBMITTED TO THE
FOREST RESEARCH INSTITUTE (DEEMED) UNIVERSITY
DEHRADUN, UTTARAKHAND

For
THE AWARD OF THE DEGREE OF
DOCTOR OF PHILOSOPHY IN FORESTRY
(Forest Botany)

By
V. VISHNUPRASAD
[Registration No. 13PHD290]

WOOD ANATOMY DISCIPLINE, BOTANY DIVISION
FOREST RESEARCH INSTITUTE
NEW FOREST, DEHRADUN – 248006
2016
DEDICATED TO

MY

BELOVED PARENTS

&

ADORABLE SISTER
ACKNOWLEDGEMENT
There is quite an endless list of people to whom I express my sincere gratitude for all their contributions that helped me a lot to make this research a fabulous success.

First and foremost, I deeply acknowledge the former Director, Dr. P. P. Bhojvaid and the present Director, Dr. Savita, Forest Research Institute, Dehradun as well as the Director - General, Dr. Ashwani Kumar, Indian Council of Forestry Research and Education (ICFRE), Dehradun for providing me the laboratory facilities to carry out this research work. At the same time, the peaceful and serene atmosphere of the campus made it a perfect place for utilizing one’s efficiency to the fullest.

The most important person whom I not only acknowledge but also have deepest high regards and respect is my supervisor, Dr. Sangeeta Gupta, Scientist-G and former Head of Department, Forest Botany Division. She was the sole guide and mentor for my work and I have seen her as a sincere, disciplined, and hard-working and perfectionist in her work. She was able to drift me into her thought-process and the ideas that came out of her expertise always improvised my work at every stage, besides encouraging me to aim for the best. I express my deepest gratitude to her for being there as an able guide as well as a motherly figure throughout my work.

I would also like to acknowledge and be thankful to the authorities of CSIR-UGC for providing me with financial support in the form of fellowship at every stage of my research, without which it would have been next to impossible for me to fund this entire work on my own.

The credit for the complete planning and analysis of the research goes to Shri Raman Nautiyal, Statistician, ICFRE, Dehradun. My hypothesis put forward in the research was aptly planned out by him, which contributed a lot in going about with the sampling work. Besides, statistical analytical tools
suggested by him to analyze the results made it highly methodical and authentic. I express my sincere thanks to Nautiyal sir for his major contribution.

An equal level of credit is acknowledged to Mr. Hemant Sati, trainer in Computers at the Forest Research Institute (Deemed) University, who gave his valuable time in solving problems related to Microsoft Office files and compilation of the work whenever required.

I would also like to mention the names of Dr. H. B. Vashishta, Scientist-E and Dr. (Mrs.) Mridula Negi, Scientist-C, Forest Ecology and Environment Division, Forest Research Institute, Dehradun for providing their ideas about the mining sites of Odisha and also the literature related to the plant species in those areas.

Another important personality who really deserves mention in golden letters is a wonderful researcher and professor of Botany, Dr. K. S. Rajput at the Maharaja Sayajirao University of Baroda, Vadodara, Gujarat whose humble and valuable permission to use the latest instruments in the Anatomy Laboratory to carry out the sectioning work and make the permanent slides contributed maximum in saving my time during the research, besides making the entire part interesting and fascinating. Working under an esteemed person like him taught me a great deal of things, which will keep inspiring and motivating me ever. At the same time, I would also like to mention the names of all the students in the laboratory at Vadodara - Amit, Amisha, Hiral, Ronak, Ravi, Ajith, Pramod sir - who welcomed me as well as supported and assisted me in every possible way during my stay. The role of Amit in this context can’t be overlooked, who was the most helpful with the instrument and its handling.
There are other scientists too, whose expertise and valuable inputs proved quite useful in my study. Dr. S. K. Srivastava, Joint Director, Botanical Survey of India (Northern Circle), Dehradun helped me by allowing access to the Herbarium at BSI. Other taxonomists at the institute - Dr. Manikandan, Scientist-C and Dr. Debojyoti Ghosh, Scientist-C also assisted me in identifying the plant species collected by me.

Equally worth mentioning are the names of Dr. Asha Rajvanshi, Scientist - G, Wildlife Institute of India, Dehradun for all her valuable inputs during the pre-thesis presentation as well as Dr. T. C. Pokhriyal, Retired Scientist and Chairman of the RAC Committee for his regular supervision and encouragement since the synopsis of the work.

I would also like to express my gratitude to Dr. Mohinder Singh and Mr. M. L. Sharma at the Scanning Electron Microscopy Laboratory, Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University, Chandigarh as well as Miss Reshma Shinde at the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) Laboratory at the SAIF, IIT-Bombay for assisting me with the respective sophisticated instruments efficiently.

All the help related to the practical aspects of my laboratory work at the Wood Anatomy Laboratory at Forest Research Institute, Dehradun was provided by many people, to whom I express my sincere thanks. Miss Amita Chauhan, RA-II and In-charge of the laboratory and Xylarium (DDw) played a great role in helping me out with data collection, maceration techniques and most important, collecting samples from the Xylarium as and when required. Similarly the contributions of my friends and colleagues – Mr. Amit Gupta, Mr. Prem Prakash Jangid, Miss Prachi Gupta, and Miss Vidisha Kandpal from the Wood Anatomy Discipline are equally acknowledged.
I would also like to separately mention, acknowledge and express highly graceful thanks to a friend and colleague from my laboratory - Mrs. Ankita Gupta, with whom the entire journey of Ph.D was extremely fascinating due to the regular discussion sessions and tours carried out for our respective similar Ph.D research works. Besides, I am equally thankful to each and every member in Ankita’s family for keeping me comfortable during my stay at Dhanbad, Jharkhand. A special gratitude is respectfully credited to Ankita’s mother who was the best company at Dhanbad, Odisha as well as at Vadodara. Her enthusiasm in my work added to the fun of it throughout. I also mention the name of Mr. Mathur, the gardener at Ankita’s home, who personally accompanied and guided fully in collecting samples from the adjoining forests of Dhanbad district.

All the staff at the Wood Anatomy Discipline were equally co-operative during my work and so I express my gratitude to them too – Mr. Magan Singh, Mr. Brij Mohan Uniyal, Mr. Arun Kumar Bharti, Mr. Pritam Rawat, Mrs. Suman Sharma, Mr. Gopal Singh Bisht, Dr. Dheerendra Kumar, Mr. Yatharth Dulgacha, and Mr. Rajat Sharma. Acknowledgement is also given to Mr. I. M. Goswami who arranged for the required instruments and chemicals time-to-time in the laboratory.

I also express my thanks to my other friends from other departments - Amol, Vijay, Santosh, Sivaranjani, Salman, Jyoti, Vandana, Pallavi, Nidhi, Ambika, Gunjan, Manoj - who kept on encouraging me with my work.

I also express my greatest regards to Mrs. Meena Potnis, Dr. Geeta Madhavan, Dr. Padma Panikar, Dr. Mahavir Gosavi, Mrs. Ashwini Deshpande, Dr. Neeraja Tutakne - all the professors of Department of Botany, as well as Mr. Pushparaj Shetty, Department of Zoology, SIES College
University of Mumbai who had laid a great foundation in me and also motivated me throughout my work.

There are people from outside the scientific fraternity too, whose support was equally necessary. All the authorities at the mining sites of Odisha were highly co-operative. Besides giving the necessary permission, they also arranged for vehicle with an assistant for the sample collection in the forest areas around the mining sites. The help provided by Mr. T. K. Roy, Mr. Sanjay Patnaik, Sunil, Karan and Bhabua is greatly regarded.

The acknowledgement would be incomplete without crediting those who constantly kept fuelling me with energy and motivation in every possible way. My adorable family members come first in this aspect. My deepest regards and respects to my parents who supported and encouraged me in every situation right from the beginning, which was the most essential for me to achieve this success and make me what I am. My sister Vaishnavi is affectionately regarded for being there with a patient ear and also for her sincere critical outputs. My extended family members at Mumbai, Hyderabad and Karur are also included in the same. There were many of my students too who appreciated my work sincerely – Harshada, Sagarika, Srinithi, Bhargav, Priya, Shruti especially. The entire family of VGT Science coaching institute at Dombivli, Mumbai including my dear friend Mr. Vinoth Balasubramanian as well as A’s Academy and its head Mr. Anand Subramaniam are thanked deeply for providing me the platform of teaching where my basic concepts got more and more clear and at the same time I could get the opportunity to learn many things from my students as well. I would also like to mention my special friends Dr. Aftabali Shaikh and Miss Shahida Mogar who were the pillars of motivation throughout. I cannot forget the warmth of love and family support provided by my landlady Mrs. Hemlata Handa, landlord Mr. Radhey Shyam Handa, their children – Shalu, Latika, Anmol, Adarsh and their grandson Sehej
and along with her entire extended family who provided not only a room for me to stay but the care and presence of a family too, when I was away from my own.

All these would never have been possible without the one and only Master of everything - the Almighty God. He was always there with His blessings and kept on paving the right path, without me having to think of it. So, last but not the least, I pray and give due respects to God for every small and big rewards that life has given me.
V. Vishnuprasad

E-mail: vitu4life@rediffmail.com

Declaration

I hereby declare that this thesis entitled “Analysis of Variations in Wood Anatomy of Hardwood Tree Species growing in and around some Iron Ore Mines of Odisha” is submitted for the fulfillment of the degree: “Doctor of Philosophy in Forestry (Forest Botany)” to the Forest Research Institute, Dehradun. I submit that this is a record of my original piece of work carried out in the Wood Anatomy Discipline, Forest Botany Division, Forest Research Institute, Dehradun. No part of this work has been submitted for any other degree or its equivalent and is entirely original.

(V. Vishnuprasad)
CERTIFICATE

This is to certify that this thesis “ANALYSIS OF VARIATIONS IN WOOD ANATOMY OF HARDWOOD TREE SPECIES GROWING IN AND AROUND SOME IRON ORE MINES OF ODISHA” submitted for the award of the degree of Doctor of Philosophy of the Forest Research Institute (Deemed University), Dehradun is a record of bonafide research carried out by Mr. V. Vishnuprasad under my supervision. No part of this has been submitted for any other degree before.

Place: Dehradun

Date: 18-10-16

Dr. (Mrs.) Sangeeta Gupta
Scientist-G
Supervisor
Wood Anatomy Discipline
Forest Botany Division
Forest Research Institute
Dehradun
FOREST RESEARCH INSTITUTE
DEEMED UNIVERSITY
DEHRADUN

This is to certify that MR. V. VISHNUPRASAD enrolment number 13PHD290 carried out research work under Dr. SANGEETA GUPTA (Supervisor) of Forest Research Institute, Dehradun. The topic of the research registered with Forest Research Institute (Deemed) University was “ANALYSIS OF VARIATIONS IN WOOD ANATOMY OF HARDWOOD TREE SPECIES GROWING IN AND AROUND SOME IRON ORE MINES OF ODISHA". The scholar presented his work in the pre-thesis submission seminar held on 17th May, 2016 and the RAC found the work to be satisfactory and approves the work to be presented in the form of thesis for evaluation by examination for “Award of Ph.D degree” by Forest Research Institute Deemed University.

Dr. Sangeeta Gupta
(Supervisor)

Dr. P. K. Pande
(Head of Division)

Dr. Asha Rajvanshi
(Expert member)

Shri Raman Nautiyal
(Expert member)

Dr. S. K. Srivastava
(Expert member)

Dr. I. C. Pokhriyal
(Chairman, RAC)
To

Mr. Vishnuprasad Varadarajan,
C/o Dr. Sangeeta Gupta,
Scientist-F & Head,
Wood Anatomy Discipline,
Forest Botany Division,
FRI Dehradun,

Sub:- Registration for Doctor of Philosophy Degree in Forestry.

Dear Sir/Madam,

I would like to inform you that the following decisions have been taken for your enrolment as Research Scholar for the Degree of Doctor of Philosophy in Forestry in this Institute:-

1. You have been registered for Doctor of Philosophy w.e.f. 01.03.2014 to 28.02.2018 as Ph.D Research Scholar.
2. Your Enrolment number is: - 13PHD290
 (For all further correspondence please quote your enrolment number.)
3. Name of Research Centre: - Forest Research Institute, Dehradun
4. The Topic of research approved by the FRI University: “Analysis of Variations in Wood Anatomy of Hardwood Tree Species growing in and around some Iron Ore Mines of Odisha.”
5. Name of Discipline: - Forest Botany
 (As per clause 3.3 of the Ph.D. Ordinance)
6. (i) Name of Supervisor: - Dr. Sangeeta Gupta
 (ii) Name of Co-Supervisor: -
7. (a) You are advised to deposit the next installment of Laboratory fee Rs. 5,000/- payable at FRIDU/Research Centre concerned through bank draft in the month of March, 2015
 (b) Library fee of Rs. 2,000/- per year payable at FRIU/Research Centre concerned in the month of March for each year of registration till submission of thesis.
 (c) Annual fee of Rs. 10,000/- payable every year in the month of March during the period of Registration at FRI University till the submission of thesis.
 (d) The above mentioned fee should be deposited during the due month i.e. March every year failing which a late fee of Rs.500/- (Bank Draft) will also have to be deposited in this office.
 (e) You are also required to deposit the thesis fee Rs. 15,000/- and viva-voce exam fee Rs. 2,000/- at the time of submitting the thesis and viva voce exam respectively to the University.
 (f) In case of extension of term of registration, the extension fee will also be charged. (1st time Extension fee Rs. 25,000/- and for II" time Extension fee Rs. 40,000/-).
8. The research scholar is required to submit the six monthly progress report till the work is presented in the pre-thesis submission seminar and is approved by the committee for submission of thesis.
 The initial 4 progress reports may come through Chairman and Member Secretary R.A.C. The rest can come through Head of Division and Supervisor concerned. The RAC shall consider the progress reports and forward the same with recommendations and comments, if any, to the Registrar, otherwise the progress report will not be counted.

P.T.O.
v. Registration of a Ph.D. Scholar is liable to be cancelled by the Director at any time if:
 i. Two consecutive six monthly progress reports are not submitted at all or are not satisfactory.
 ii. The attendance of Research Scholar is less than 75% in any term.
 iii. The scholar violates the clause 4.3 of the Ph.D ordinance regarding compulsion of 2 years Study leave for pursuing Ph.D in Case of in service candidates (except the employees of ICFRE and Research Center of FRI (Deemed) University).

10. No internal Ph.D. Scholar shall accept during the period of research any paid assignment apart from Research Fellowships, Research Assistantship etc. unless in the opinion of the RAC such an assignment will not interfere with his/her research work.

11. A Ph.D. Scholar shall not be permitted to take any other degree course, but may be permitted by the RAC to take part-time Diploma or Certificate course(s) not affecting the scholars research work adversely.

12. A Research Scholar is required to pursue research in the Institute/Research Centre under the Supervisor on the approved subject for not less than twenty-four months commencing from the date of his/her registration.

13. The Research Scholar may not later than three months from the date of issue of registration letter, modify the scheme of the research work or nature or scope of the subject, on the recommendation of the Supervisor and RAC, with the approval of Director.

14. As per clause 6.14 of the Ph.D. Ordinance, the Ph.D. scholars shall publish at least one research paper in a peer reviewed journal before the submission of the thesis to the University for evaluation, and produce evidence for the same in the form of acceptance letter or reprint. The acceptance letter or the reprint should be attached along with the thesis in the annexure.

15. The research scholar should normally submit the thesis within 4 calendar years from the date of registration. Further extension of the term on yearly basis is possible only on specific recommendation of R.A.C., if approved by the R.D.C. However no extension is possible beyond 6 years of registration. The recommendation of Research Advisory Committee for extension of term of registration of the scholar should reach this office before expiry of term of registration.

16. Further the performance of the Research Scholar shall be evaluated at the end by the R.A.C. concerned in the pre-thesis submission seminar and R.A.C. shall send the minutes to Registrar, FRI University with full comments.

17. Please ensure that the clause 7 of the Ph.D. Ordinance is fully complied with before submission of the thesis to University.

18. Please note that your Registration as Research Scholar is to be governed as per rules, regulation and ordinances of FRI University, with applicable amendments made by the University from time to time.

 For all further correspondence, please quote your enrolment number.

 (Dr. A.K. Tripathi)
 Registrar
 FRI (Deemed) University

Encl: 1. Fee receipt No.772 dated 23.09.2014 for Rs. 33,500/-
 2. Format of progress report

Copy to:
 1. Dr. Sangeeta Gupta, (Supervisor of the Scholar) Scientist-F & Head, Wood Anatomy Discipline, Forest Botany Division, FRI, Dehradun for information and necessary action.

 (Dr. A.K. Tripathi)
 Registrar
 FRI (Deemed) University
TABLE OF CONTENTS

ACKNOWLEDGEMENT

CERTIFICATES

LIST OF PLATES

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

LIST OF PUBLICATIONS

CHAPTER 1: INTRODUCTION

1.1 Origin of the problem ... 1
1.2 Overview of study area ... 3
1.3 Objectives of the study .. 8
1.4 Scope of the study ... 9

CHAPTER 2: REVIEW OF LITERATURE

2.1 Effect of mining activities .. 11
2.2 Relation between wood anatomy and environmental stress 12
 2.2.1 Effect of environmental stress on vessels 13
 2.2.2 Effect of environmental stress on fibres 15
 2.2.3 Effect of environmental stress on parenchyma 15
2.3 Environmental stress and specific gravity 16
2.4 Heavy metal content especially iron content 17
CHAPTER 3: MATERIALS AND METHODS .. 18 – 36

3.1 Sampling and Collection ... 18 – 29
 3.1.1 Collection of the stressed samples 18
 3.1.2 Collection of the control samples 25

3.2 Laboratory work ... 30 – 33
 3.2.1 Sectioning and permanent slides 30
 3.2.2 Maceration of wood samples 30
 3.2.3 Microscopic data collection 31
 3.2.4 Photomicrographs 31
 3.2.5 Scanning Electron Microscopy 31
 3.2.6 Spectroscopy to determine iron element content 32
 3.2.7 Specific gravity determination 32

3.3 Statistical Analysis .. 33 – 36
 3.3.1 Comparison of quantitative features of wood microstructure between stressed samples and controls 33
 3.3.2 Comparison of qualitative features of wood microstructure between stressed samples and controls 34
 3.3.3 Determination of distance effect and corresponding analysis of wood microstructure across the quadrats 35

CHAPTER 4: RESULTS .. 37 – 177

4.1 Results for Mangifera indica 37

4.2 Results for Shorea robusta 45
4.3 Results for *Dalbergia latifolia* ... 52
4.4 Results for *Zizyphus jujuba* ... 58
4.5 Results for *Eucalyptus globulus* ... 64
4.6 Results for *Tamarindus indica* .. 70
4.7 Results for *Artocarpus heterophyllus* 77
4.8 Results for *Schleichera oleosa* .. 82
4.9 Results for *Terminalia bellirica* .. 87
4.10 Results for *Peltophorum pterocarpum* 93
4.11 Results for *Alstonia scholaris* .. 99
4.12 Results for *Bombax ceiba* ... 106
4.13 Results for *Ficus benghalensis* ... 112
4.14 Results for *Kydia calycina* .. 118
4.15 Results for *Syzygium cuminii* ... 124
4.16 Results for *Tectona grandis* .. 131
4.17 Results for *Diospyros melanoxylon* .. 138
4.18 Results for *Pongamia pinnata* .. 144
4.19 Results for *Acacia auriculiformis* ... 150
4.20 Results for *Madhuca longifolia* ... 157
4.21 Results for *Psidium guajava* .. 162
4.22 Results for *Buchanania lanzan* .. 167
4.23 Results for iron element content (in ppm) for all species 174
4.24 Results of scanning electron microscopy 176
CHAPTER 5: DISCUSSION ...178 – 187

5.1 Comparison of stressed wood samples with the controls 179

5.2 Analysis of the anatomical features with distance from the mines 185

5.3 Estimated iron element content in the wood of controls and stressed samples .. 186

CHAPTER 6: CONCLUSIONS ..188 – 191

CHAPTER 7: FUTURE PROSPECTS ...192 – 194

SUMMARY ... 195 – 203

REFERENCES ... 204 – 224
LIST OF PLATES

Plate I. The three iron ore mining sites and the forests around them…… ……… 6
Plate II. Satellite images of the three iron ore mining sites under study………… 7
Plate IIIA. Differences in vessel features between control and stressed samples of
Mangifera indica………………………………………………………………… 41
Plate IIIB. Differences in fibre and ray features between control and stressed samples of
Mangifera indica………………………………………………………………… 42
Plate IVA. Differences in vessel features between control and stressed samples of
Shorea robusta…………………………………………………………………… 48
Plate IVB. Differences in fibre and ray features between control and stressed samples of
Shorea robusta…………………………………………………………………… 49
Plate VA. Differences in vessel dimensions between control and stressed samples of
Dalbergia latifolia………………………………………………………………… 55
Plate VB. Differences in fibre and ray features between control and stressed samples of
Dalbergia latifolia………………………………………………………………… 56
Plate VIA. Differences in vessel and ray features between control and stressed samples of
Zizyphus jujuba…………………………………………………………………… 61
Plate VIB. Differences in fibre dimensions between control and stressed samples of
Zizyphus jujuba…………………………………………………………………… 62
Plate VIIA. Differences in vessel features between control and stressed samples of
Eucalyptus globulus……………………………………………………………… 67
LIST OF TABLES

Table 1A. Details of trees from which stressed samples collected from the mining sites Of Odisha……………………………………………………………… 21 - 25

Table 1B. Details of the trees from which control samples collected from forests of Dhanbad district…………………………………………………………………. 26 - 27

Table 1C. Details of control samples collected from the Xylarium (DDw)……… 28 - 29

Table 2A. t-test result for control and stressed samples of *Mangifera indica* for different wood anatomical parameters…………………………………………… 39

Table 2B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Mangifera indica*……………… 40

Table 2C. ANOVA table for stressed *Mangifera indica* samples along the distance from the mines……………………………………………………………………. 43

Table 2D. Estimated values of specific gravity and iron content for *Mangifera indica* samples………………………………………………………………….. 44

Table 3A. t-test table for control and stressed samples of *Shorea robusta* for different wood anatomical parameters……………………………………………………. 46

Table 3B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Shorea robusta*………………… 47

Table 3C. ANOVA table for stressed *Shorea robusta* samples along the distance from the mines…………………………………………………………………….. 50
Table 3D. Estimated values of specific gravity and iron content for *Shorea robusta* samples... 51

Table 4A. t-test table for control and stressed samples of *Dalbergia latifolia* for different wood anatomical parameters.. 53

Table 4B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Dalbergia latifolia*....................... 54

Table 4C. t-test table for stressed *Dalbergia latifolia* samples along the distance from the mines... 57

Table 4D. Estimated values of specific gravity and iron content for *Dalbergia latifolia* samples.. 57

Table 5A. t-test table for control and stressed samples of *Zizyphus jujuba* for different wood anatomical parameters.. 59

Table 5B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Zizyphus jujuba*....................... 60

Table 5C. t-test table for stressed *Zizyphus jujuba* samples along the distance from the mines.. 63

Table 5D. Estimated values of specific gravity and iron content for *Zizyphus jujuba* samples.. 63

Table 6A. t-test table for control and stressed samples of *Eucalyptus globulus* for different wood anatomical parameters.. 65

Table 6B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Eucalyptus globulus*....................... 66

Table 6C. Estimated values of specific gravity and iron content for *Eucalyptus globulus* samples.. 69
<table>
<thead>
<tr>
<th>Table 7A.</th>
<th>t-test table for control and stressed samples of Tamarindus indica for different wood anatomical parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.. 71</td>
</tr>
<tr>
<td>Table 7B.</td>
<td>Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of Tamarindus indica</td>
</tr>
<tr>
<td></td>
<td>.. 72</td>
</tr>
<tr>
<td>Table 7C.</td>
<td>t-test table for stressed Tamarindus indica samples along the distance from the mines</td>
</tr>
<tr>
<td></td>
<td>.. 75</td>
</tr>
<tr>
<td>Table 7D.</td>
<td>Estimated values of specific gravity and iron content for Tamarindus indica samples</td>
</tr>
<tr>
<td></td>
<td>.. 76</td>
</tr>
<tr>
<td>Table 8A.</td>
<td>t-test table for control and stressed samples of Artocarpus heterophyllus for different wood anatomical parameters</td>
</tr>
<tr>
<td></td>
<td>.. 78</td>
</tr>
<tr>
<td>Table 8B.</td>
<td>Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of Artocarpus heterophyllus</td>
</tr>
<tr>
<td></td>
<td>.. 79</td>
</tr>
<tr>
<td>Table 8C.</td>
<td>Estimated values of specific gravity and iron content for Artocarpus heterophyllus samples</td>
</tr>
<tr>
<td></td>
<td>.. 81</td>
</tr>
<tr>
<td>Table 9A.</td>
<td>t-test table for control and stressed samples of Schleichera oleosa for different wood anatomical parameters</td>
</tr>
<tr>
<td></td>
<td>.. 83</td>
</tr>
<tr>
<td>Table 9B.</td>
<td>Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of Schleichera oleosa</td>
</tr>
<tr>
<td></td>
<td>.. 84</td>
</tr>
<tr>
<td>Table 9C.</td>
<td>t-test table for stressed Schleichera oleosa samples along the distance from the mines</td>
</tr>
<tr>
<td></td>
<td>.. 86</td>
</tr>
<tr>
<td>Table 9D.</td>
<td>Estimated values of specific gravity and iron content for Schleichera oleosa samples</td>
</tr>
<tr>
<td></td>
<td>.. 86</td>
</tr>
<tr>
<td>Table 10A.</td>
<td>t-test table for control and stressed samples of Terminalia bellirica for different wood anatomical parameters</td>
</tr>
<tr>
<td></td>
<td>.. 88</td>
</tr>
</tbody>
</table>
Table 10B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Terminalia bellirica* ... 89

Table 10C. Estimated values of specific gravity and iron content for *Terminalia bellirica* samples ... 92

Table 11A. t-test table for control and stressed samples of *Peltophorum pterocarpum* for different wood anatomical parameters ... 94

Table 11B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Peltophorum pterocarpum* 95

Table 11C. t-test table for stressed *Peltophorum pterocarpum* samples along the distance from the mines .. 98

Table 11D. Estimated values of specific gravity and iron content for *Peltophorum pterocarpum* samples .. 98

Table 12A. t-test table for control and stressed samples of *Alstonia scholaris* for different wood anatomical parameters ... 100

Table 12B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Alstonia scholaris* 101

Table 12C. t-test table for stressed *Alstonia scholaris* samples along the distance from the mines .. 104

Table 12D. Estimated values of specific gravity and iron content for *Alstonia scholaris* samples .. 105

Table 13A. t-test table for control and stressed samples of *Bombax ceiba* for different wood anatomical parameters ... 107

Table 13B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Bombax ceiba* .. 108
Table 13C. Estimated values of specific gravity and iron content for *Bombax ceiba* samples…………………………………………………………………………… 111

Table 14A. t-test table for control and stressed samples of *Ficus benghalensis* for different wood anatomical parameters…………………………………………………………… 113

Table 14B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Ficus benghalensis*………………………… 114

Table 14C. t-test table for stressed *Ficus benghalensis* samples along the distance from the mines……………………………………………………………………………… 116

Table 14D. Estimated values of specific gravity and iron content for *Ficus benghalensis* samples……………………………………………………………………………… 117

Table 15A. t-test table for control and stressed samples of *Kydia calycina* for different wood anatomical parameters…………………………………………………………… 119

Table 15B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Kydia calycina*………………………… 120

Table 15C. Estimated values of specific gravity and iron content for *Kydia calycina* samples……………………………………………………………………………… 123

Table 16A. t-test table for control and stressed samples of *Syzygium cuminii* for different wood anatomical parameters…………………………………………………………… 125

Table 16B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Syzygium cuminii*………………………… 126

Table 16C. t-test table for stressed *Syzygium cuminii* samples along the distance from the mines……………………………………………………………………………… 129

Table 16D. Estimated values of specific gravity and iron content for *Syzygium cuminii* samples……………………………………………………………………………… 130
Table 17A. t-test table for control and stressed samples of *Tectona grandis* for different wood anatomical parameters .. 132

Table 17B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Tectona grandis* .. 133

Table 17C. ANOVA table for stressed *Tectona grandis* samples along the distance from the mines .. 136

Table 17D. Estimated values of specific gravity and iron content for *Tectona grandis* samples ... 137

Table 18A. t-test table for control and stressed samples of *Diospyros melanoxylon* for different wood anatomical parameters .. 139

Table 18B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Diospyros melanoxylon* 140

Table 18C. ANOVA table for stressed *Diospyros melanoxylon* samples along the distance from the mines .. 143

Table 18D. Estimated values of specific gravity and iron content for *Diospyros melanoxylon* samples ... 143

Table 19A. t-test table for control and stressed samples of *Pongamia pinnata* for different wood anatomical parameters .. 145

Table 19B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Pongamia pinnata* 146

Table 19C. Estimated values of specific gravity and iron content for *Pongamia pinnata* samples ... 149

Table 20A. t-test table for control and stressed samples of *Acacia auriculiformis* for different wood anatomical parameters .. 151
Table 20B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Acacia auriculiformis* …………………. 152

Table 20C. t-test table for stressed *Acacia auriculiformis* samples along the distance from the mines…………………………………………………………………… 155

Table 20D. Estimated values of specific gravity and iron content for *Acacia auriculiformis* samples……………………………………………………………………. 156

Table 21A. t-test table for control and stressed samples of *Madhuca longifolia* for different wood anatomical parameters…………………………………… 158

Table 21B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Madhuca longifolia*……………… 159

Table 21C. Estimated values of specific gravity and iron content for *Madhuca longifolia* samples…………………………………………………………………… 161

Table 22A. t-test table for control and stressed samples of *Psidium guajava* for different wood anatomical parameters…………………………………… 163

Table 22B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Psidium guajava*………………… 164

Table 22C. Estimated values of specific gravity and iron content for *Psidium guajava* samples…………………………………………………………………… 166

Table 23A. t-test table for control and stressed samples of *Buchanania lanzan* for different wood anatomical parameters…………………………………… 168

Table 23B. Fisher’s exact test for comparing qualitative wood anatomical features between control and stressed samples of *Buchanania lanzan*………………….. 169
Table 23C. Estimated values of specific gravity and iron content for Buchanania lanzan samples……………………………………………………………………………… 171

Table 24A. Compiled result of the t-test carried out for comparing quantitative features of stressed wood samples with the control samples………………………… 172

Table 24B. Compiled result of the t-test and Anova carried out to study the distance effect of stressed samples from the core of the mines to the fringes……………… 173
LIST OF FIGURES

Figure 1. Diagrammatic representation of systematic sampling method of sample collection ... 18

Figure 2. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of Mangifera indica 39

Figure 3. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of Shorea robusta 47

Figure 4. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of Dalbergia latifolia 54

Figure 5. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of Zizyphus jujuba 60

Figure 6. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of Eucalyptus globulus 66

Figure 7. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of Tamarindus indica 72

Figure 8. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of Artocarpus heterophyllus 79

Figure 9. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of Schleichera oleosa 84

Figure 10. Graph showing the comparative values (means) of various wood anatomical
features for control and stressed samples of *Terminalia bellirica*........... 89

Figure 11. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Peltophorum pterocarpum*... 95

Figure 12. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Alstonia scholaris*............. 101

Figure 13. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Bombax ceiba*................. 108

Figure 14. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Ficus benghalensis*............. 114

Figure 15. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Kydia calycina*.............. 120

Figure 16. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Syzygium cuminii*.............. 126

Figure 17. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Tectona grandis*.............. 133

Figure 18. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Diospyros melanoxylon*...... 140

Figure 19. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Pongamia pinnata*............. 146

Figure 20. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Acacia auriculiformis*............. 152
Figure 21. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Madhuca longifolia*…………. 159

Figure 22. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Psidium guajava*…………….. 164

Figure 23. Graph showing the comparative values (means) of various wood anatomical features for control and stressed samples of *Buchanania lanzan*……………… 169

Figure 24. Graph (of means) of estimated iron content for all the 22 species studied. 174
<table>
<thead>
<tr>
<th></th>
<th>Abbreviation</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ANOVA</td>
<td>Analysis of Variance</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>B</td>
<td>Bolani Ore Mines</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>BOM</td>
<td>Bolani Ore Mines</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>BSI</td>
<td>Botanical Survey of India</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>CF</td>
<td>Crystal Frequency</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>D</td>
<td>Dhanbad district</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>DBH</td>
<td>Diameter at Breast Height</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>DDw</td>
<td>Xylarium, Forest Research Institute, Dehradun</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>DPX</td>
<td>Dimethyl Phthalate Xylene</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>E</td>
<td>Earlywood (in Tectona grandis)</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>FD</td>
<td>Fibre Diameter</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>FL</td>
<td>Fibre Length</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>FLu</td>
<td>Fibre Lumen Width</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>FRI</td>
<td>Forest Research Institute</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>FWT</td>
<td>Fibre Wall Thickness</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>GIS</td>
<td>Geographical Information System</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>GPS</td>
<td>Global Positioning System</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>IAWA</td>
<td>International Association of Wood Anatomists</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>IBM</td>
<td>Indian Bureau of Mines</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>ICP-AES</td>
<td>Inductively Coupled Plasma Atomic Emission Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>IIT</td>
<td>Indian Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>IVP</td>
<td>Inter Vessel Pits</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>L</td>
<td>Latewood (in Tectona grandis)</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>L</td>
<td>Lines (in sampling collection)</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>M</td>
<td>Mine</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>MRC</td>
<td>Multiseriate Ray Cells</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>MRH</td>
<td>Multiseriate Ray Height</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>MRW</td>
<td>Multiseriate Ray Width</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>NS</td>
<td>Non-Significant variation</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>O</td>
<td>Odisha Corporation Mines Ltd.</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

5. **Vishnuprasad Varadarajan, Sangeeta Gupta and Ankita Gupta (2017).** Variations in the secondary xylem of hardwood trees growing in the oldest iron ore mines of Odisha, India. *Trees – Structure and Function.* Published online. ISSN 0931-1890. DOI 10.1007/s00468-017-1562-2