CONCLUSION

- Fruit fresh weight, fruit dry weight, fruit length, seed weight per fruit, pericarp weight, floss weight and floss: fruit weight ratio showed significant variation among stands; highest values were recorded in stand S_2 and lowest values in stand S_3. Fruit diameter did not vary significantly with stands.
- Fruit fresh weight, fruit dry weight, fruit length, seed weight per fruit, floss weight per fruit also showed significant variation among trees within the stand.
- Tree T_1, T_7 and T_8 of stand S_2 recorded >51 g fruit fresh weight while the maximum values of fruit fresh weight in stands S_1, S_3 and S_4 ranged from 27.38 to 38.51 g.
- Tree T_1, T_4, T_7 and T_8 of stand S_2 recorded 44.07-50.71 g of fruit dry weight while the maximum fruit dry weight of other stands were 17.82-33.68 g fruit dry weight.
- Fruit length for tree T_1, T_4, T_7 and T_8 of stand S_2 had significantly longer fruits (>138.95 mm length) than stands S_1, S_3 and S_4.
- Seed weight per fruit and floss weight per fruit in trees T_1, T_4, T_7 and T_8 stand S_2 of were also considerably greater than stand S_1, S_3 and S_4.
- Stand has stronger influence on fruit and seed traits which accounted for 26.30 to 34.89 per cent of variation in fruit fresh weight, fruit dry weight, fruit length, seed weight per fruit, pericarp weight, floss weight and floss: fruit weight ratio. Fruit diameter and seed: Fruit weight ratios were not influenced by stand or tree.
- Considerable variation existed among fruit within tree for several fruit and seed traits.
- Repeatability was moderate (0.43 to 0.66) for fruit fresh weight, fruit dry weight, fruit length, seed weight per fruit and pericarp weight. Repeatability for seed weight per fruit was high (0.66) and negligible for fruit diameter.
- Seed germination was not affected by stand.
- Stand S_2 was found to possess better seed characteristics and may be recommended seed collection.
• Trees T_1, T_4, T_7 and T_8 in stand S_2 can be recommended for collection of seeds for germplasm development.

• Seedlings of stand S_2 showed better height and collar diameter than other stands. Survival percentage (%) of seedlings from stand S_2 was found higher than other stands.

• IBA concentrations of 10,000 ppm and 20,000 ppm showed best rooting success.

• Cuttings from juvenile plants and young trees showed greater rooting success while those of mature trees showed meagre rooting. Cuttings from younger plants can be used for establishing germplasm bank.

• The soil available nutrients can be studied for seed source identification and germplasm development.

• The environmental and topographic factors can be studied for quality production of fruits and seeds.