APPENDIX C: EQUATIONS USED

APPENDIX C: EQUATIONS USED

❖ The generalized form of the **Freundlich** (Freundlich, 1906) equation is

$$q_e = KF C_e^{-1/n} \qquad \dots \dots (1)$$

where K_F is the Freundlich isotherm constant related to sorption capacity; n is the constant related to affinity of the Cr VI ion on immobilized beads.

❖ The Langmuir sorption isotherm for a solute in a liquid solution is expressed as

$$q_e = q_m b C_e / (1 + bC_e) \qquad \dots (2)$$

where b = binding capacity of the solute on the sorbent surface (L/mg), C = metal ion concentration at any time (mg/L), $C_e = metal$ ion concentration at equilibrium (mg/L), m = amount of cell mass (g), q = amount of metal adsorbed per unit weight of biosorbent (mg/g), $q_e = amount$ of metal adsorbed per unit weight of biosorbent at equilibrium (mg/g), $q_m = amount$ of metal adsorbed per unit weight of biosorbent (mg/g).

❖ The linearized form of equation (2) is

$$1/q_e = 1/q_m b \cdot 1/C_e + 1/q_m$$
 (3)

1/q_e vs 1/C_e gives the straight line with slope 1/q_mb and 1/q_m as intercepts. b is the sorption isotherm constant (L/mg).

❖ Dubinin-Radushkevich (D-R) isotherm was used to determine the type of adsorption or adsorption mechanism for remediation of Cr VI by alginate beads. A linear form of D-R isotherm is:

$$lnQ = lnQ_m - k\varepsilon^2 \qquad \dots (4)$$

where Q_m is the Dubinin-Radushkevich monolayer capacity (mg/g), k is a constant related to adsorption energy, and ϵ is the Polanyi potential which is related to the equilibrium concentration as follows

$$\varepsilon = RT \ln \left[1 + 1/C_e \right] \qquad \dots (5)$$

where R is the gas constant (8.31 J/(mol K)) and T is the absolute temperature, K; the constant k gives the mean free energy, E (kJ/mol), of sorption per molecule of the sorbate when it is solution and can be computed using the relationship

$$E = 1/\sqrt{2} k \qquad \dots \dots (6)$$

❖ The first primary isotherm equation used was:

$$q_e = [(C_0 - C_e)/V] \times M$$
(7)

where q_e is the amount of metal adsorbed (mg/g) on the beads-biomass, at equilibrium, C_0 is the initial metal ion concentration in solution (mg/L), C_e is the equilibrium metal ion concentration in solution (mg/L), V is the volume of the medium (L), M is the amount of the biomass used in the reaction mixture.

• Of the various isotherm models that were studied, the following linearized Langmuir equation was used:

$$C_e/q_e = 1/Q^0b + C_e/Q^0$$
(8)

APPENDIX C

Where Q^0 is the amount of adsorbate at complete monolayer coverage (mg/g), which gives the maximum sorption capacity of the sorbent and "b" (L/mg) is the Langmuir isotherm constant that relates to the energy of adsorption.

❖ The **Freundlich** isotherm is expressed as:

$$q_e = K_F C_e^{1/n} \qquad \dots (9)$$

❖ A linear form of the above expression is:

$$log q_e = log K_F + 1/nlog C_e \qquad (10)$$

where K_{F} is the Freundlich constant and "n" is the Freundlich exponent.