APPENDIX B:

LIST OF FIGURES
APPENDIX B

APPENDIX B: LIST OF FIGURES

Fig. 1 Alginate, a linear polysaccharide of (1→4)-linked \(\alpha\)-L-guluronate and \(\beta\)-d-mannuronate

Fig. 2 Sodium alginate

Fig. 3 Building blocks of alginate: \(\beta\)-d-mannuronate and \(\alpha\)-L-guluronate

Fig. 4 Chelation of alginate with divalent cations of calcium

Fig. 5 Human health hazards with Cr VI exposure

Fig. 6 pH meter

Fig. 7 Vortex mixer

Fig. 8 Electronic analytical balance

Fig. 9 Electronic analytical balance

Fig. 10 Spectrophotometer

Fig. 11 Eppendorf Centrifuge

Fig. 12 Temperature controlled shaker incubator

Fig. 13 Refrigerator

Fig. 14 Freezer

Fig. 15 Laminar air flow

Fig. 16 Autoclave

Fig. 17 Lyophilizer

Fig. 18 Ultra-sonicator

Fig. 19 Milli Q water-maker

Fig. 20 Microscope

Fig. 21 Autolab Electrochemical Analyzer
APPENDIX B

Fig. 22 Atomic Absorption Spectrophotometer
Fig. 23 Scanning Electron Microscope
Fig. 24 Transmission Electron Microscope
Fig. 25 Atomic Force Microscope
Fig. 26 X-Ray Diffractometer
Fig. 27 Energy Dispersive X-Ray Spectroscopy
Fig. 28 Fourier Transform Infra-Red Spectrometer
Fig. 29 Peristaltic pump
Fig. 30 Geopolitical location of CLC Tannery Complex, Bantala, Kolkata, West Bengal, India
Fig. 31 Schematic presentation of serial dilution method
Fig. 32 (a)-(f) Growth of isolates in selective medium
Fig. 33 (a)-(f) Gram characters of the isolates: 33 (a), (b), (c), (e) are Gram Negative; 33 (d), (f) are Gram Positive bacteria
Fig. 34 (a)-(f) Growth and regular maintenance of isolates on M1 media (with chromium VI)
Fig. 35 (a)-(f) Growth and regular maintenance of isolates in LB agar media (without Cr VI)
Fig. 36 (a)-(f) Nutrient Agar slants (parafilm-sealed) of isolates, preserved in duplicates at 4°C
Fig. 37 Phylogenetic tree of *E.coli* T1, prepared using neighbour joining method
Fig. 38 Phylogenetic tree of *Enterobacter aerogenes* T2, using neighbour joining method
Fig. 39 Phylogenetic tree of *Aeromonas* sp. T4, prepared using neighbour joining method
Fig. 40 Phylogenetic tree of *Exiguobacterium profundum* S1, by neighbour joining method
Fig. 41 Phylogenetic tree of *Acinetobacter* sp. PD 12 S2, using neighbour joining method
APPENDIX B

Fig. 42 Phylogenetic tree of *Bacillus* sp. G2DM-32 C3, using neighbour joining method

Fig. 43 Isolates showing resistance to heavy metal mercury (Hg) only of all metals used

Fig. 44 Optimum temperature for maximal growth of T2 and S2 bacteria

Fig. 45 Optimum pH for maximal growth of T2 and S2 bacteria

Fig. 46 Growth curves of isolates in LB broth medium (without Cr VI)

Fig. 47 Growth of isolates in LB broth, with 19.8 mg/L Cr VI in the batch media

Fig. 48 Growth of T2, T4, S2 in M9 media (with 8.8 mg/L Cr VI)

Fig. 49 Growth of T1 in LB broth batch culture medium (without Cr VI, as control)

Fig. 50 Growth of T1 in LB broth (in presence of Cr VI)

Fig. 51 Bioremediation of 8.86 mg/L Cr VI by 1% of *Enterobacter aerogenes*, at pH 7

Fig. 52 Bioremediation of 17.73 mg/L Cr VI by *Enterobacter aerogenes*

Fig. 53 Bioremediation of 26.59 mg/L Cr VI by *Enterobacter aerogenes*

Fig. 54 Bioremediation of Cr VI by *Enterobacter aerogenes* at pH5

Fig. 55 Bioremediation of Cr VI by *Enterobacter aerogenes* at pH9

Fig. 56 Bioremediation of Cr VI by *Enterobacter aerogenes* with 5% inoculum

Fig. 57 Bioremediation of Cr VI by *Enterobacter aerogenes* with 10% inoculum

Fig. 58 Bioremediation of 8.86 mg/L Cr VI by 1% of *Acinetobacter* sp. PD 12 at pH 7

Fig. 59 Bioremediation of 17.73 mg/L Cr VI by *Acinetobacter* sp. PD 12

Fig. 60 Bioremediation of 26.59 mg/L Cr VI by *Acinetobacter* sp. PD 12
APPENDIX B

Fig. 61 Bioremediation of Cr VI by *Acinetobacter* sp. PD 12 at pH 5

Fig. 62 Bioremediation of Cr VI by *Acinetobacter* sp. PD 12 at pH 9

Fig. 63 Bioremediation of Cr VI by *Acinetobacter* sp. PD 12 with 5% inoculum

Fig. 64 Bioremediation of Cr VI by *Acinetobacter* sp. PD 12 with 10% inoculum

Fig. 65 Scanning electron microscopic view of S2 (*Acinetobacter* sp. PD 12) in absence of chromium (control)

Fig. 66 Scanning electron microscopic view of diplo cocco-bacilli S2, whose morphology shrunk in presence of chromium-stress

Fig. 67 In the absence of metal stress of chromium, SEM images of cells of *Enterobacter aerogenes* appear to be discrete and individually clear

Fig. 68 In the presence of chromium, SEM images of cells of *Enterobacter aerogenes* form chain-like structures with each other

Fig. 69 Unstained whole mount of a cell of *Enterobacter aerogenes* as seen under TEM. Scale bar = 200 nm

Fig. 70 Unstained whole mount of cells of *Enterobacter aerogenes* shows interaction with the metal (as shown by the arrow signs) as seen under TEM. Scale bar = 500 nm

Fig. 71 Energy Dispersive X-Ray Spectroscopic microanalysis of *Enterobacter aerogenes*

Fig. 72 X-ray diffraction (XRD) of T2 (*Enterobacter aerogenes*) in the absence Cr VI as grown in LB media, where x axis = 20 value range and y axis = intensity

Fig. 73 X-ray diffraction (XRD) of T2 (*Enterobacter aerogenes*) in the presence of 40 mg/L Cr VI
APPENDIX B

Fig. 74 *Enterobacter aerogenes*, grown in the absence of chromium as control, was found to have smooth surface under AFM.

Fig. 75 *Enterobacter aerogenes*, grown in the presence of 40 mg/L Cr VI, was found to have discontinuous cell surface under AFM.

Fig. 76: 5 mg/L Cr VI solution (1 L) was added to plant A.

Fig. 77 Plant B was treated with 5 mg/L Cr VI solution along with T2 bacterial suspension and the plant was visibly unaffected after 7 days, whereas leaves of plant A were affected.

Fig. 78 Bioremediation of Cr VI by live cells of *Enterobacter aerogenes* from tannery effluents.

Fig. 79 Bioremediation by lyophilised cells of *Enterobacter aerogenes* from tannery effluents.

Fig. 80 Standard curve for protein estimation.

Fig. 81 Lineweaver-Burk plot for chromium reduction property of *Enterobacter aerogenes*.

Fig. 82 Checking of beads dosage for optimum remediation.

Fig. 83 Continuously stirred lab-level remediation unit.

Fig. 84 Freshly prepared alginate-T2 beads.

Fig. 85 Bioremediation of 10 mg/L Cr VI by alginate-T2 beads.

Fig. 86 Standard curve of Cr VI, based on colorimetric reaction with DPC, at 540 nm.

Fig. 87 Lab-level plug-flow reactor.
APPENDIX B

Fig. 88 Bioremediation of 2mg/L Cr VI from synthetic M2 solution in lab-level plug-flow reactor

Fig. 89 Langmiur isotherm of Cr VI ion adsorption on alginate-T2 beads

Fig. 90 Freundlich isotherm of Cr VI adsorption on alginate-T2 biosorbent

Fig. 91 Dubinin-Radushkevich (D-R) isotherm on alginate-T2 biosorbent

Fig. 92 Decrease in % bioremediation due to desorption from beads after each sorption cycle

Fig. 93 Gradual decay of beads' bioremedial efficiency due to protein loss

Fig. 94 SEM image of fresh whole alginate-T2 beads; Resolution = 500μm

Fig. 95 SEM image of used whole alginate-T2 beads; Resolution = 500μm

Fig. 96 EDS of used beads showing Cr VI accumulation

Fig. 97 XRD graphs of used and fresh beads

Fig. 98 FTIR spectra of fresh and used alginate-T2 beads

Fig. 99 Cyclic voltamogram of various concentrations of Cr VI

Fig. 100 Standard calibration curve

Fig. 101 Interference checking of various metals in absence of Cr VI

Fig. 102 Interference checking of various metals in presence of 40 μg/L Cr VI

Fig. 103 Detection and estimation by biosensor (electrochemical sensing) v/s colorimetric estimation by DPC at 540 nm