1. INTRODUCTION

1.1 General 1-2
1.2 Toxicity 2-4
1.3 Genotoxicity of arsenic 4-5
1.4 Dietary protection 5-6
1.5 Effects of environmental genotoxicants 6
1.6 Programme to test the cytotoxic activity of arsenic and effects of dietary protectants 7-8

2. REVIEW OF LITERATURE

Part A: Effects of arsenic in different systems

2.1 Introduction 9
2.2 Physical and chemical properties 11
2.3 Occurrence 12
2.4 Sources 12
2.4.1 Air 12
2.4.2 Water 13
2.4.3 Soil 14
2.4.4 Food 15

Part A1: Arsenic toxicity in human

2.1.1 Human exposure 16
2.1.1.1 Sources of human exposure 16
2.1.1.1.1 Non occupational human exposure 16
2.1.1.1.2 Occupational human exposure 17
2.1.2 Arsenic intake, absorption, metabolism and elimination 20
2.1.3 Toxicity in human 23
2.1.3.1 General health effects 23
2.1.3.1.1 Acute poisoning 23
2.1.3.1.2 Chronic poisoning 26
2.1.3.2 Genetic toxicity and mutagenicity 29
2.1.3.3 Developmental and reproductive toxicity 36
2.1.3.4 Immunotoxicity 37
2.1.3.5 Neurotoxicity 38
2.1.3.6 Biochemical and cellular toxicity 39
2.1.3.7 Hematotoxicity 41
2.1.3.8 Carcinogenicity 42
2.1.3.8.1 Skin 43
2.1.3.8.2 Lung cancer 45
2.1.3.8.3 Bladder and kidney cancer 45
2.1.3.8.4 Other internal cancers 46
2.1.4 Mechanism of arsenic toxicity 48
2.1.5 Arsenic detoxification 50

Part A2: Arsenic Toxicity In Animals

2.2.1 General effects 53
2.2.1.1 Acute toxicity 53
2.2.1.2 Chronic toxicity 54
2.2.2 Genetic toxicity and mutagenicity 57
2.2.3 Developmental and reproductive toxicity 61
2.2.4 Immunotoxicity 66
2.2.5 Neurotoxicity 67
2.2.6 Biochemical and cellular toxicity 69
2.2.7 Carcinogenicity 71
2.2.8 Mechanism of toxicity 75

Part A3: Arsenic Toxicity In Plants

2.3.1 Sources of exposure 78
2.3.2 Factors affecting toxicity 79
2.3.3 Arsenic metabolism in plants 80
2.3.4 Toxic effects 82
2.3.4.1 Phytotoxic effects 82
2.3.4.2 Mutagenic, clastogenic, cytotoxic effects 86

Part B: Dietary Plant Products as Antioxidants

2.1 Introduction 88

Part B1: Tea

2.1.1 Description, origin and distribution 91
2.1.2 Chemical Composition 91
2.1.3 Tea as a protective agent 92
2.1.3.1 Digestive complaints 92
2.1.3.2 Infections 92
2.1.3.3 Guards against tooth decay 92
2.1.3.4 Skin disorders 93
2.1.3.5 Immune booster 94
2.1.3.6 Decreases risk of cardiovascular diseases 94
2.1.3.7 Diabetes treatment 95
2.1.3.8 Antimutagenic and anticlastogenic effects 96
2.1.3.9 Combats various forms of cancer 97
2.1.4 Tea as an antioxidant 103
2.1.5 Possible health risks

Part B2: Beta Carotene

2.2.1 Sources
2.2.2 Recommended dietary allowances
2.2.3 Intake, absorption and metabolism
2.2.4 Beta-carotene as a protective agent
2.2.4.1 Immune booster
2.2.4.2 Decreases risk of cardiovascular disease
2.2.4.3 Protection against Diabetes
2.2.4.4 Combats various forms of cancer
2.2.5 Beta carotene as an anti-oxidant
2.2.6 Health risks of too many carotenoids

3. MATERIALS AND METHODS

3.1 Test system used
3.2 Human model
3.2.1 In vivo experiments
3.2.1.1 Estimation of arsenic by atomic absorption spectrometry protocol
3.2.1.2 Haemogram study of the arsenic exposed population protocol
3.2.1.3 Study of chromosomal aberrations from human leucocyte culture
3.2.1.3.1 Preparation of reagents
3.2.1.3.2 Protocol of chromosome preparation from human leucocyte culture
3.2.1.3.3 Experimental design
3.2.1.4 Cytokinesis-block micronucleus assay from human lymphocyte culture
3.2.1.4.1 Preparation of reagents
3.2.1.4.2 Protocol of human lymphocyte culture for cytokinesis-block micronucleus assay
3.2.1.4.3 Experimental design
3.2.1.5 Micronucleus assay from buccal smear in human
3.2.1.5.1 Preparation of reagents
3.2.1.5.2 Protocol for micronucleus assay from buccal smear
3.2.1.5.3 Experimental design
3.2.2 In vitro experiments
3.2.2.1 Salts tested for in vitro experiments
3.2.2.2 Effects of sodium arsenite on human chromosomes in vitro
3.2.2.2.1 Preparation of reagents
3.2.2.2.2 Protocol of chromosome preparation from human leucocyte culture
3.2.2.2.3 Experimental design
3.2.2.3 Effects of sodium arsenate on human chromosomes in vitro
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2.3.1 Preparation of reagents</td>
<td>131</td>
</tr>
<tr>
<td>3.2.2.3.2 Protocol of chromosome preparation from human leucocyte culture</td>
<td>131</td>
</tr>
<tr>
<td>3.2.2.3.3 Experimental design</td>
<td>131</td>
</tr>
<tr>
<td>3.3 Animal model</td>
<td>132</td>
</tr>
<tr>
<td>3.3.1 In vivo experiments</td>
<td>133</td>
</tr>
<tr>
<td>3.3.1.1 Maintenance and breeding of animals</td>
<td>133</td>
</tr>
<tr>
<td>3.3.1.2 Animal diet (composition)</td>
<td>133</td>
</tr>
<tr>
<td>3.3.1.3 Salts tested for in vivo experiments</td>
<td>134</td>
</tr>
<tr>
<td>3.3.1.4 Dietary protectant screened</td>
<td>135</td>
</tr>
<tr>
<td>3.3.1.5 Study of mitotic chromosomes from mice bone marrow cells</td>
<td>136</td>
</tr>
<tr>
<td>3.3.1.5.1 Preparation of reagents</td>
<td>137</td>
</tr>
<tr>
<td>3.3.1.5.2 Protocol for study of mitotic chromosomes from mice bone marrow cells</td>
<td>139</td>
</tr>
<tr>
<td>3.3.1.5.3 Experimental design</td>
<td>139</td>
</tr>
<tr>
<td>3.3.1.5.3.1 Cytotoxic effects of sodium arsenite on bone marrow chromosomes of Mus musculus following exposure to single concentration (24 hrs).</td>
<td>139</td>
</tr>
<tr>
<td>3.3.1.5.3.2 Cytotoxic effects of sodium arsenate on bone marrow chromosomes of Mus musculus following exposure to single concentration (24 hrs).</td>
<td>140</td>
</tr>
<tr>
<td>3.3.1.5.3.3 Effects of black tea on bone marrow chromosomes of Mus musculus following exposure to different duration</td>
<td>140</td>
</tr>
<tr>
<td>3.3.1.5.3.4 Protection afforded by black tea infusion against sodium arsenite on bone marrow chromosomes of Mus musculus following exposure to different duration</td>
<td>141</td>
</tr>
<tr>
<td>3.3.1.5.3.5 Protection afforded by black tea infusion against sodium arsenite on bone marrow chromosomes of Mus musculus following exposure to different duration</td>
<td>142</td>
</tr>
<tr>
<td>3.3.1.5.3.6 Effects of beta-carotene on bone marrow chromosomes of Mus musculus following exposure to different duration</td>
<td>143</td>
</tr>
<tr>
<td>3.3.1.5.3.7 Protection afforded by beta carotene against sodium arsenite on bone marrow chromosomes of mus musculus following exposure to different duration</td>
<td>144</td>
</tr>
<tr>
<td>3.3.1.5.3.8 Protection afforded by beta carotene against sodium arsenite on bone marrow chromosomes of Mus musculus following exposure to different duration</td>
<td>145</td>
</tr>
<tr>
<td>3.3.1.6 Histopathological studies in animal experiment</td>
<td>147</td>
</tr>
<tr>
<td>3.3.1.6.1 Preparation of reagents</td>
<td>147</td>
</tr>
<tr>
<td>3.3.1.6.2 Method for histopathological studies</td>
<td>147</td>
</tr>
<tr>
<td>3.4 Statistical analyses</td>
<td>151</td>
</tr>
<tr>
<td>3.4.1 Student's t test</td>
<td>151</td>
</tr>
<tr>
<td>3.4.2 Study of analysis of variance (ANOVA)</td>
<td>152</td>
</tr>
</tbody>
</table>
4. OBSERVATIONS

4.1 Human Model

4.1.1 Effects of arsenic on human in vivo 155
4.1.2 Effects of arsenic on human in vitro 163
4.1.2.1 Effects of sodium arsenite and sodium arsenate 163
on human leucocyte culture in vitro

4.2 Animal model

4.2.1 Effects on mouse bone marrow chromosomes after 170
exposure to arsenic salts in vivo
4.2.1.1 Effects of individual metals like sodium arsenite and 170
sodium arsenate on bone marrow chromosomes
of mouse after exposure in vivo
4.2.1.2 Effects of sodium arsenite and sodium arsenate on 174
Mus musculus in vivo in combination with black tea infusion
observed in bone marrow chromosomes
4.2.1.3 Effects of sodium arsenite and sodium arsenate on 185
Mus musculus in vivo in combination with beta carotene
observed in bone marrow chromosomes
4.2.2 Histopathological observations of liver, kidney, spleen, stomach 196
and intestinal tissue in Swiss albino mice (Mus musculus L.)
4.2.2.1 Effect of sodium arsenite alone 196
4.2.2.2 Effect of sodium arsenate alone 196
4.2.2.3 Effect of tea alone 196
4.2.2.4 Effect of tea followed by sodium arsenite 197
4.2.2.5 Effect of tea followed by sodium arsenate 197
4.2.2.6 Effect of beta carotene alone 197
4.2.2.7 Effect of beta carotene followed by sodium arsenite 197
4.2.2.8 Effect of beta carotene followed by sodium arsenate 198

5. DISCUSSION

5.1 General 199
5.2 Cytotoxic effects of arsenic 201
5.2.1 Human study 202
5.2.1.1 Effects of arsenic in directly exposed population 202
5.2.1.1.1 Arsenic exposure study 202
5.2.1.1.2 Haemogram study 203
5.2.1.1.3 Chromosomal study 204
5.2.1.1.4 Cytokinesis block micronuclei assay from lymphocyte culture 205
5.2.1.1.5 Micronuclei assay from buccal smear 206
5.2.1.2 Effects of arsenic compounds in vitro 208
5.2.1.2.1 Effects of sodium arsenite 208
5.2.1.2.2 Effects of sodium arsenate 210
5.2.2 Animal study 212
5.2.2.1 Direct effects of arsenic compounds on Swiss albino mice (*Mus musculus*) chromosomes in vivo

5.2.2.1.1 Effects of sodium arsenite

5.2.2.1.2 Effects of sodium arsenate

5.2.2.2 Effects of black tea infusion given alone as dietary supplement in Swiss albino mice (*Mus musculus*) in vivo

5.2.2.3 Dietary administration of black tea infusion in modifying the clastogenic effects of arsenic compounds in Swiss albino mice (*Mus musculus*) in vivo

5.2.2.3.1 Black tea infusion in different duration against single dose of sodium arsenite

5.2.2.3.2 Black tea infusion in different duration against single dose of sodium arsenate

5.2.2.4 Effects of beta-carotene prepared from crude leaf of Indian Spinach given alone as dietary supplement in Swiss albino mice (*Mus musculus*) in vivo

5.2.2.5 Dietary administration of beta-carotene in modifying the clastogenic effects of arsenic compounds in Swiss albino mice (*Mus musculus*) in vivo

5.2.2.5.1 Beta-carotene in different duration against single dose of sodium arsenite

5.2.2.5.2 Beta-carotene in different duration against single dose of sodium arsenate

5.2.2.6 Histopathological studies

5.3 Conclusions

6. SUMMARY

7. REFERENCES 234-295

8. RESEARCH PUBLICATIONS