TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td></td>
<td>No.</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1.</td>
<td>GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1.</td>
<td>Natural products importance in drug discovery</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2.</td>
<td>Challenges in development of new antimicrobial drugs</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3.</td>
<td>Miscellaneous bacterial pathogens</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3.1.</td>
<td>Pseudomonas aeruginosa</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3.2.</td>
<td>Staphylococcus aureus</td>
<td>8</td>
</tr>
<tr>
<td>1.1.3.3.</td>
<td>Klebsiella pneumoniae</td>
<td>10</td>
</tr>
<tr>
<td>1.1.3.4.</td>
<td>Streptococcus pyogenes</td>
<td>12</td>
</tr>
<tr>
<td>1.2.</td>
<td>HYPOTHESIS</td>
<td>13</td>
</tr>
<tr>
<td>1.3.</td>
<td>OBJECTIVES</td>
<td>13</td>
</tr>
<tr>
<td>1.4.</td>
<td>OVERVIEW OF THESIS</td>
<td>13</td>
</tr>
<tr>
<td>1.4.1.</td>
<td>Outline of current Research work</td>
<td>16</td>
</tr>
<tr>
<td>1.5.</td>
<td>REVIEW OF LITERATURE</td>
<td>17</td>
</tr>
<tr>
<td>1.5.1.</td>
<td>Antimicrobial metabolites from different bacteria</td>
<td>17</td>
</tr>
<tr>
<td>1.5.2.</td>
<td>Marine Bacillus producing secondary metabolites</td>
<td>23</td>
</tr>
<tr>
<td>1.5.3.</td>
<td>Antimicrobial agents targeting bacterial cell walls and cell membranes</td>
<td>26</td>
</tr>
<tr>
<td>1.5.3.1.</td>
<td>Cell wall active agents</td>
<td>26</td>
</tr>
<tr>
<td>1.5.3.2.</td>
<td>Cell membrane active agents</td>
<td>29</td>
</tr>
</tbody>
</table>
2. PRELIMINARY SCREENING OF SALTPAN MICROBES AGAINST CLINICAL PATHOGENS

2.1. INTRODUCTION

2.2. METHODS

- **2.2.1. Collection of saltpan soil samples**
- **2.2.2. Isolation of saltpan microbes by spread plate method**
- **2.2.3. Test bacterial strains**
- **2.2.4. Dual culture assay**

2.3. RESULTS AND DISCUSSION

- **2.3.1. Isolation of potent strain**

3. MORPHOLOGICAL, BIOCHEMICAL CHARACTERISTICS AND 16S rRNA ANALYSIS OF POTENT ISOLATE

3.1. INTRODUCTION

3.2. METHODS

- **3.2.1. Gram-staining**
- **3.2.2. Spore staining**
- **3.2.3. Hanging drop technique**
- **3.2.4. IMViC test**
- **3.2.5. Triple sugar iron (TSI) test**
- **3.2.6. Nitrate reduction test**
- **3.2.7. Catalase test**
- **3.2.8. Oxidase test**
- **3.2.9. Urease test**
- **3.2.10. Oxidation-Fermentation (OF) test**
- **3.2.11. Casein hydrolysis test**
- **3.2.12. Starch hydrolysis test**
- **3.2.13. Gelatin hydrolysis test**

ix
3.2.14. Molecular identification of MHC10 isolate by 16S rRNA analysis 51
3.2.15. Phylogenetic analysis 52
3.2.16. GenBank submission 52
3.3. RESULTS AND DISCUSSION 52
 3.3.1. Identification of strain possessing efficient antibacterial activity 52

4. CULTURE OPTIMIZATION, EXTRACTION AND PURIFICATION OF ANTIBACTERIAL COMPOUND
 4.1. INTRODUCTION 58
 4.2. METHODS 60
 4.2.1. Optimization of culture conditions for metabolite production 60
 4.2.2. Fermentation and extraction 60
 4.2.3. Isolation 61
 4.3. RESULTS AND DISCUSSION 61
 4.3.1. Influence of culture conditions on production of antibacterial compound 61
 4.3.2. Purification of antibacterial compound 63

5. CHEMICAL CHARACTERIZATION OF ANTIBACTERIAL COMPOUND
 5.1. INTRODUCTION 66
 5.2. METHODS 71
 5.2.1. TLC 71
 5.2.2. HPLC 71
 5.2.3. FTIR 71
 5.2.4. 1H and 13C NMR 72
 5.3. RESULTS AND DISCUSSION 72
5.3.1. Spectroscopic analysis of pure antibacterial compound

6. **IN VITRO ANTIBACTERIAL ACTIVITY OF PURIFIED HYDROQUINONE**

6.1. INTRODUCTION 77

6.2. METHODS 80

6.2.1. Determination of antibacterial activity 80

6.2.2. MIC and MBC determination 80

6.2.3. Time kill studies 80

6.2.4. Determination of Cell viability 81

6.3. RESULTS AND DISCUSSION 81

6.3.1. Antibacterial activity of hydroquinone 81

7. **MODE OF ACTION OF HYDROQUINONE ON BACTERIAL PATHOGENS**

7.1. INTRODUCTION 89

7.2. METHODS 91

7.2.1. Electron microscopic analysis 91

7.2.2. Membrane potential assay 92

7.2.3. Potassium release assay 92

7.3. RESULTS AND DISCUSSION 93

7.3.1. Morphological and ultrastructural changes in bacteria 93

7.3.2. Effect of hydroquinone on cell membrane potential 96

8. SUMMARY AND CONCLUSION 101

REFERENCES 103

APPENDICES 124

LIST OF PUBLICATIONS 132

VITAE 133