Chapter 4

\(C_{4p}\)-frame of Complete Multipartite Multigraphs

In this chapter, some necessary or sufficient conditions are established for the existence of a \(C_{2k}\)-frame in \((K_m \otimes I_n)(\lambda)\). In fact, the results obtained in this chapter provide a complete solution to the existence of \(C_{4p}\)-frame in \((K_m \otimes I_n)(\lambda)\), when \(p\) is a prime.

4.1 Introduction and Preliminary Results

A partial factor of \(K_m \otimes I_n\) is a factor of \((K_m \otimes I_n)\mid V_i\), for some \(i \in \{1, 2, \ldots, m\}\) and \(V_i\) is an \(i^{th}\) partite set of \(K_m \otimes I_n\). A partial \(H\)-factor of \(K_m \otimes I_n\) is a partial factor of \(K_m \otimes I_n\) such that each component of it is isomorphic to the subgraph \(H\). An \(H\)-frame of \(K_m \otimes I_n\) is a decomposition of \(K_m \otimes I_n\) into partial \(H\)-factors.

Heinrich et.al[48] proved that there exists a near \(C_m\)-factorization of \(K_{ms+1}(2)\) for all odd \(m \geq 3\) and all \(s \geq 1\). Burling and Heinrich [18] have shown that there exists a near \(C_{2m}\)-factorization of \(K_n(2)\) if and only if \(n \equiv 1 \pmod{2m}\). Stinson [81] proved that there exists a \(C_3\)-frame of \((K_m \otimes I_n)(\lambda)\) if and only
if \(m \geq 4 \), \(\lambda n \equiv 0 \pmod{2} \) and \(n(m - 1) \equiv 0 \pmod{3} \). Wang [92] established necessary and sufficient conditions for the existence of cube frames in complete multipartite multigraphs. In [22], Cao, et.al. proved that there exists a \(C_k \)-frame of \((K_m \otimes I_n)(\lambda) \) for \(k \in \{4, 5, 6\} \) if and only if \(n(m - 1) \equiv 0 \pmod{k} \), \(\lambda n \equiv 0 \pmod{2} \), \(m \geq 3 \) when \(k \in \{4, 6\} \), \(m \geq 4 \) when \(k = 5 \) and \((k, \lambda, n, m) = (6, 1, 6, 3) \). In [84], Tiemeyer also proved that there exists a \(C_4 \)-frame of \((K_m \otimes I_n)(\lambda) \) if and only if \(n(m - 1) \equiv 0 \pmod{4} \), \(\lambda n \equiv 0 \pmod{2} \), \(m \geq 3 \).

To prove the main results we require the following:

Theorem 4.1 ([54]). For \(t \geq 3 \), \(K_{t,t,t} \) has a \(C_t \)-factorization.

Theorem 4.2. [18] For \(n \geq 3 \), \(K_n(2) \) has a near \(C_{2k} \)-factorization if and only if \(n \equiv 1 \pmod{2k} \).

Theorem 4.3. [49] \(K_{m,n} \) has a \(C_k \)-factorization if and only if

1. \(m = n \equiv 0 \pmod{2} \)
2. \(k \equiv 0 \pmod{2} \geq 4 \), and
3. \(2n \equiv 0 \pmod{k} \)

with precisely one exception, namely \(m = n = k = 6 \).

Theorem 4.4. [28] There exists a \(K_2 \)-frame of \((K_m \otimes I_n)(\lambda) \) if and only if \(m \geq 3 \) and \(n(m - 1) \equiv 0 \pmod{2} \).

Theorem 4.5 ([81]). There exists a \(C_3 \)-frame of \((K_m \otimes I_n)(\lambda) \) if and only if \(m \geq 4 \), \(\lambda n \equiv 0 \pmod{2} \) and \(n(m - 1) \equiv 0 \pmod{3} \).

Theorem 4.6. [22] There exists a \(C_k \)-frame of \((K_m \otimes I_n)(\lambda) \) for \(k \in \{4, 5, 6\} \) if and only if \(n(m - 1) \equiv 0 \pmod{k} \), \(\lambda n \equiv 0 \pmod{2} \), \(m \geq 3 \) when \(k \in \{4, 6\} \), \(m \geq 4 \) when \(k = 5 \), and \((k, \lambda, n, m) = (6, 1, 6, 3) \).
Theorem 4.7. [60, 61] There exists a pair of mutually orthogonal latin squares of order n for every n = 2, 6.

Theorem 4.8. [50] Let G be a graph with chromatic number χ(G). Then

(i) G / G ⊗ I_m if χ(G) ≤ N(m) + 2 and

(ii) G \ G ⊗ I_m if χ(G) ≤ N(m) + 1,

where N(m) is the maximum number of pairwise orthogonal latin squares of order m.

4.2 C_{2k}-frame of K_m ⊗ I_n

This section deals with the existence of some general results on C_{2k}-frame of complete multipartite graph.

Lemma 4.9. If (K_m ⊗ I_n)(λ) has a C_{2k}-frame, then

(i) m ≥ 3

(ii) (m - 1)n ≡ 0 (mod 2k)

(iii) at least one of m and n must be even when λ is odd.

Proof. It is clear from the definition of C_{2k}-frame that m ≥ 3. As C_{2k}-frame is the edge disjoint union of partial C_{2k}-factors of (K_m ⊗ I_n)(λ), the number of vertices in (K_m ⊗ I_n)(λ) \ V_i must be divisible by 2k, so (m - 1)n ≡ 0 (mod 2k). Since each partial C_{2k}-factor of (K_m ⊗ I_n)(λ) consists of (m - 1)n edges, the number of partial C_{2k}-factors in (K_m ⊗ I_n)(λ) is

\[\lambda \frac{m(m-1)}{2} n^2 = \frac{1}{2} \lambda m n \]

which implies that at least one of m, n must be even, if λ is odd. ∎
4.2. C_{2k}-frame of $K_m \otimes I_n$

Lemma 4.10. For any $s > 0$, if $K_m \otimes I_n$ has a C_{2k}-frame, then so does $K_m \otimes I_{ns}$.

Proof. Let $C = \{C_{2k}, C_{2k}, \ldots, C_{2k}\}$ be a C_{2k}-frame of $K_m \otimes I_n$, where each C_{2k} is a partial C_{2k}-factor of $K_m \otimes I_n$.

By definition, we write

$$K_m \otimes I_{ns} = (K_m \otimes I_n) \otimes I_s = (C_k \otimes C_{2k} \otimes \cdots \otimes C_{2k}) \otimes I_s = (C_k \otimes I_s) \otimes (C_{2k} \otimes I_s) \otimes \cdots \otimes (C_{2k} \otimes I_s).$$

By Theorem 4.8, each $C_{2k} \otimes I_s$ has a C_{2k}-frame. This completes the proof. □

Lemma 4.11. For $n \geq 1$, if $K_{m+1} \otimes I_{2n}$ has a C_{2k}-frame and $K_{mn,mn}$ has a C_{2k}-factorization, then $K_{4m+1} \otimes I_{2n}$ has a C_{2k}-frame.

Proof. Let $V(K_{4m+1}) = \bigcup_{i=0}^{S} B_i \cup \{\infty\}$, where $B_i = \{mi + j, 1 \leq j \leq m\}$, $V(I_{2n}) = \bigcup_{j=0}^{S} D_j$, where $D_j = \{nq + j, 1 \leq q \leq n\}$ and $V(K_{4m+1} \otimes I_{2n}) = \bigcup_{i=0}^{S} B_i \cup \{\infty \times I_{2n}\}$, where $B_i = B_i \times D_j$.

Find a new graph B from $K_{4m} \otimes I_{2n}$ by identifying each B_i, $i \in Z_4, l \in Z_2$ into a single vertex b'_l and join two vertices b'_l and b'_s if there exists a complete bipartite graph $K_{B'_l, B'_s} \cong K_{mn,mn}$ between B'_l and B'_s in $K_{4m} \otimes I_{2n}$.

The resulting graph B is isomorphic to $K_4 \otimes I_2$. We know by Theorem 4.4, $K_4 \otimes I_2$ has a K_2-frame $\{rF_0, rF_1, rF_2, rF_3, 1 \leq r \leq 2\}$ where rF_i is an rth partial K_2-factor which does not contain the vertices of ith partite set of $K_4 \otimes I_2$, $i = 0, 1, 2, 3$. While we blow up, corresponding to each $\bigcup_{r=1}^{S} F_i$, $i = 0, 1, 2, 3$, we have $6K_{mn,mn} (\cong C_6 \otimes I_{mn})$ in $K_{4m} \otimes I_{2n}$ which does not contain the vertices of $K_{4m} \otimes I_{2n}$ corresponding to the ith partite set of $K_4 \otimes I_2$, which is nothing but $B_i \times I_{2n}$. Now the missing vertices $B_i \times I_{2n}$ of $K_{4m} \otimes I_{2n}$ along with $\infty \otimes I_{2n}$ form a $K_{B_i \cup \infty} \otimes I_{2n} \cong K_{m+1} \otimes I_{2n}$ in $K_{4m+1} \otimes I_{2n}$ which covers the rest of the vertices of $K_{4m+1} \otimes I_{2n}$ that are not covered by the above $6K_{mn,mn}$ correspond
to the partial K_2-factors $\mathcal{S} = \bigcap_{r=1}^{\infty} F_r$ of $K_4 \otimes I_2$.

By the hypothesis, $6K_{mn,mn}(= C_6 \otimes I_{mn})$ has a C_{2k}-factorization consisting mn C_{2k}-factors and $K_{m+1} \otimes I_{2n}$ has a C_{2k}-frame consisting of $nm + n$ partial C_{2k}-factors. Note that the mn C_{2k}-factors of $6K_{mn,mn}$ and mn partial C_{2k}-factors of $K_{m+1} \otimes I_{2n}$ together give mn partial C_{2k}-factors of $K_{4m+1} \otimes I_{2n}$. The remaining n partial C_{2k}-factors of $K_{m+1} \otimes I_{2n}$ with missing partite set $\infty \times I_{2n}$ in $K_{4m+1} \otimes I_{2n}$ are kept aside for future purpose. So corresponding to each F_r and missing part i of $K_4 \otimes I_2$, $0 \leq i \leq 3$, we have mn partial C_{2k}-factors of $K_{4m+1} \otimes I_{2n}$ and n partial C_{2k}-factors of $K_{B_i \cup \infty} \otimes I_{2n} \cong K_{m+1} \otimes I_{2n}$ with missing partite set $\infty \times I_{2n}$ in $K_{4m+1} \otimes I_{2n}$.

Taking the union of all n partial C_{2k}-factors of $K_{B_i \cup \infty} \otimes I_{2n}$ with missing partite set $\infty \times I_{2n}$, which are kept aside for future purpose, for each i, $0 \leq i \leq 3$, we have another n partial C_{2k}-factors of $K_{4m+1} \otimes I_{2n}$. Totally we get $4mn + n$ partial C_{2k}-factors of $K_{4m+1} \otimes I_{2n}$ and hence a C_{2k}-frame exists. The above construction will be more clear from Figure 4.1(a)-(d).

![Figure 4.1: Construction of C_{2k}-frame of $K_{4m+1} \otimes I_{2n}$](image-url)
Lemma 4.12. For \(n \geq 1 \), if \(K_{m+1} \otimes I_{2n} \) has a \(C_{2k} \)-frame and \(K_{2mn,2mn} \) has a \(C_{2k} \)-factorization, then \(K_{mt+1} \otimes I_{2n} \) has a \(C_{2k} \)-frame, \(t \geq 3 \) is an odd integer.

Proof. Let \(V(K_{mt+1}) = \bigcup_{j=0}^{S} B_j \cup \{\infty\} \), where \(B_i = \{mi + j, 1 \leq j \leq m\} \). We obtain a new graph \(B \) from \(K_{mt} \), by identifying each \(B_i \) into a single vertex \(b_i \) and join two vertices \(b_i \) and \(b_j \) if the corresponding \(B_i \) and \(B_j \) form a \(K_{B_i,B_j} \) in \(K_{mt} \). Then the new graph \(B \) is isomorphic to \(K_{t} \). By Theorem 4.4, \(K_{t} \) has a near 1-factorization \(\{F_0, F_1, \ldots, F_{t-1}\} \), where \(F_i \) is a near 1-factor of \(K_{t} \) with missing vertex \(i \). While we blow up, each \(F_i \) of \(K_{t} \) will give to raise to \((\frac{t-1}{2})K_{B_i,B_j} \) in \(K_{mt} \). So corresponding to each \(F_i \) of \(K_{t} \), we have \((\frac{t-1}{2})K_{m,m} \otimes I_{2n} \) in \(K_{mt} \otimes I_{2n} \). Note that \(K_{m,m} \otimes I_{2n} \cong K_2 \otimes I_{2mn} \cong K_{2mn,2mn} \), i.e. corresponding to each \(F_i \) of \(K_{t} \), we have a \((\frac{t-1}{2})K_{2mn,2mn} \) in \(K_{mt} \otimes I_{2n} \) which is a subgraph of \(K_{mt+1} \otimes I_{2n} \). Corresponding to the missing vertex \(i \) of \(F_i \) in \(K_{t} \), we have the \(B_i \) in \(K_{mt} \) and hence \(K_{B_i,\{\infty\}} \otimes I_{2n} \cong K_{m+1} \otimes I_{2n} \) covers the rest of the vertices of \(K_{mt+1} \otimes I_{2n} \) that are not covered by \((\frac{t-1}{2})K_{m,m} \otimes I_{2n} \).

By the hypothesis, \(K_{2mn,2mn} \) has a \(C_{2k} \)-factorization consisting of \(mn \) \(C_{2k} \)-factors and \(K_{m+1} \otimes I_{2n} \) has a \(C_{2k} \)-frame consisting of \(mn + n \) partial \(C_{2k} \)-factors. Note that the \(mn \) \(C_{2k} \)-factors of \((\frac{t-1}{2})K_{2mn,2mn} \) and \(mn \) partial \(C_{2k} \)-factors of \(K_{m+1} \otimes I_{2n} \) together give \(mn \) partial \(C_{2k} \)-factors of \(K_{mt+1} \otimes I_{2n} \). The remaining \(n \) partial \(C_{2k} \)-factors of \(K_{m+1} \otimes I_{2n} \) with missing partite set \(\infty \times I_{2n} \) are kept aside for future purpose. So corresponding to each \(F_i \) and the missing vertex \(i \) of \(K_{t} \), \(0 \leq i \leq t-1 \), we have \(mn \) partial \(C_{2k} \)-factors of \(K_{mt+1} \otimes I_{2n} \) and \(n \) partial \(C_{2k} \)-factors of \(K_{B_i,\infty} \otimes I_{2n} \cong K_{m+1} \otimes I_{2n} \) with missing partite set \(\infty \times I_{2n} \) in \(K_{m+1} \otimes I_{2n} \).

By taking the union of all \(n \) partial \(C_{2k} \)-factors of \(K_{B_i,\infty} \otimes I_{2n} \) with missing partite set \(\infty \times I_{2n} \), which are kept aside for future purpose, for each \(i, 0 \leq i \leq t-1 \), we have another \(n \) partial \(C_{2k} \)-factors of \(K_{mt+1} \otimes I_{2n} \). Totally we get \(mnt + n \) partial \(C_{2k} \)-factors of \(K_{mt+1} \otimes I_{2n} \) and hence a \(C_{2k} \)-frame exists.

\[\square \]
Lemma 4.13. For \(k \geq 2 \), the graph \(K_{2k+1} \otimes I_2 \) has a \(C_{2k} \)-frame.

Proof. Let \(V(K_{2k+1} \otimes I_2) = \{i_1, i_2; 0 \leq i \leq 2k-1\} \cup \{\infty_1, \infty_2\} \). Now we construct a \(C_{2k} \)-frame of \(K_{2k+1} \otimes I_2 \) in two cases as follows:

Case(i): \(k \) even.

For \(1 \leq i \leq k \),

\[
C_{2k}^i = (i_1, (1+i)_1, (2k-1+i)_2, (2+i)_1, (2k-2+i)_2, (3+i)_1, \\
(2k-3+i)_2, (4+i)_1, (2k-4+i)_2, \ldots, (k-2+i)_1, (k+2+i)_2, \\
(k-1+i)_1, (k+1+i)_2, \infty_2)
\]

\[
(i_2, (1+i)_2, (2k-1+i)_1, (2+i)_2, (2k-2+i)_1, (3+i)_2, \\
(2k-3+i)_1, (4+i)_2, (2k-4+i)_1, \ldots, (k-2+i)_2, (k+2+i)_1, \\
(k-1+i)_2, (k+1+i)_1, \infty_1)
\]

For \(k+1 \leq i \leq 2k \),

\[
C_{2k}^i = (i_1, (1+i)_2, (2k-1+i)_2, (2+i)_2, (2k-2+i)_2, (3+i)_2, \\
(2k-3+i)_2, (4+i)_2, (2k-4+i)_2, \ldots, (k-2+i)_2, (k+2+i)_2, \\
(k-1+i)_2, (k+1+i)_2, \infty_2)
\]

\[
(i_2, (1+i)_1, (2k-1+i)_1, (2+i)_1, (2k-2+i)_1, (3+i)_1, \\
(2k-3+i)_1, (4+i)_1, (2k-4+i)_1, \ldots, (k-2+i)_1, (k+2+i)_1, \\
(k-1+i)_1, (k+1+i)_1, \infty_1) \text{ and }
\]

\[
C_{2k}^{2k+1} = (0_1, 1_1, 2_2, 3_1, 4_2, \ldots, k_2, (k+1)_2, (k+2)_1, \ldots, (2k-1)_1) \\
(0_2, 1_2, 2_1, 3_2, 4_1, 5_2, \ldots, k_1, (k+1)_2, (k+2)_2, \ldots, (2k-1)_2),
\]

where the additions are taken modulo \(2k \).
4.2. C_{2k}-frame of $K_m \otimes I_n$

Case (ii): k odd.

For $1 \leq i \leq 2k - 1$, C_{2k}^i can be constructed as in case (i).

Let $C_{2k}^{2k} = (0_2, 1_2, (2k - 1)_2, 2_2, (2k - 2)_2, 3_2, (2k - 3)_2, \ldots, (k - 2)_2,$

\[(k + 2)_2, (k - 1)_2, (k + 1)_2, \infty_2) \]

\[(0_1, 1_1, (2k - 1)_1, 2_1, (2k - 2)_1, 3_1, (2k - 3)_1, \ldots, (k - 2)_1, \]

\[(k + 2)_1, (k - 1)_1, (k + 1)_1, \infty_1) \text{ and} \]

$C_{2k}^{2k+1} = (0_1, 2_1, 3_1, \ldots, (k - 1)_1, k_2, (k + 1)_2, (k + 2)_2, (k + 3)_2, \ldots,$

\[(2k - 2)_1, (2k - 1)_1) \]

\[(0_2, 1_2, 2_2, 3_2, \ldots, (k - 1)_2, k_1, (k + 1)_2, (k + 2)_2, (k + 3)_2, \ldots,

\[(2k - 2)_2, (2k - 1)_2). \]

Clearly, each C_{2k}^i is a partial C_{2k}-factor of $K_{2k+1} \otimes I_2$. Hence $\{C_{2k}^i; 1 \leq i \leq 2k + 1\}$ gives a C_{2k}-frame of $K_{2k+1} \otimes I_2$ in both the cases. \qed

Lemma 4.14. For $k \equiv 1 \pmod{2}$, the graph $K_{2k+1} \otimes I_2$ has a C_{4k}-frame.

Proof. Let $V(K_{2k+1} \otimes I_2) = \{i_1, i_2; i \in Z_{2k}\} \cup \{\infty_1, \infty_2\}$. Now we construct a C_{4k}-frame of $K_{2k+1} \otimes I_2$ as follows: The construction is obvious when $k = 1$. So we consider $k \geq 3$.

For $i = 1, 3, 5, 7, \ldots, 2k - 1$,

$C_{4k}^i = (i_1, (1 + i)_1, (2k - 1 + i)_2, (2 + i)_2, (2k - 2 + i)_1, (3 + i)_1,$

\[(2k - 3 + i)_2, (4 + i)_2, (2k - 4 + i)_1, \ldots, (k - 2 + i)_1, (k + 2 + i)_2, \]

\[(k - 1 + i)_2, (k + 1 + i)_1, \infty_1, i_2, (1 + i)_2, (2k - 1 + i)_1, (2 + i)_1, \]

\[(2k - 2 + i)_2, (3 + i)_2, (2k - 3 + i)_1, (4 + i)_1, (2k - 4 + i)_2, \ldots, \]

\[(k - 2 + i)_2, (k + 2 + i)_1, (k - 1 + i)_1, (k + 1 + i)_2, \infty_2). \]
for \(i = 2, 4, 6, 8 \ldots 2k, \)

\[
C_{4k}^i = (i_2, (1 + i)_2, (2k - 1 + i)_1, (2 + i)_1, (2k - 2 + i)_2, (3 + i)_2, (2k - 3 + i)_1, (4 + i)_1, (2k - 4 + i)_2, \ldots, (k - 2 + i)_2, (k + 2 + i)_1, (k - 1 + i)_1, (k + 1 + i)_2, (2 + i)_2, (2k - 2 + i)_1, (3 + i)_1, (2k - 3 + i)_2, (4 + i)_2, (2k - 4 + i)_1, \ldots, (k - 2 + i)_1, (k + 2 + i)_2, (k - 1 + i)_2, (k + 1 + i)_1, \infty) \text{ and }
\]

\[
C_{4k}^{2k+1} = (0_1, 1_1, 2_2, 3_2, 4_1, \ldots, (k - 1)_1, k_1, (k + 1)_2, (k + 2)_2, \ldots, (2k - 1)_1, 0_2, 1_2, 2_1, 3_1, 4_2, 5_2, \ldots, (k - 1)_2, k_2, (k + 1)_1, (k + 2)_1, \ldots, (2k - 1)_2),
\]

where the additions are taken modulo 2k.

Clearly, each \(C_{4k}^i, 1 \leq j \leq 2k + 1 \) is a partial \(C_{4k} \)-factor of \(K_{2k+1} \otimes I_2 \). Hence \(\{C_{4k}^i ; 1 \leq j \leq 2k + 1 \} \) gives a \(C_{4k} \)-frame of \(K_{2k+1} \otimes I_2 \).

Lemma 4.15. For \(k \equiv 3 \pmod{4} \), the graph \(K_{k+1} \otimes I_4 \) has a \(C_{4k} \)-frame.

Proof. Let \(V(K_{4s+4} \otimes I_4) = \{X_i / i \in \mathbb{Z}_{4s+3}\} \cup \{X_\infty\}, \) where \(X_i = \{i; 1 \leq t \leq 4\} \) and \(X_\infty = \{\infty; 1 \leq t \leq 4\} \). Then \(E(K_{4s+4} \otimes I_4) = (\sum_{0 \leq i < j \leq 4s+2} F_i(X_i, X_j)) \)

\[
(\sum_{i \in \mathbb{Z}_{4s+3}^\prime} \cup_{0 \leq i < j \leq 4s+2} F_i(X_i, X_\infty)).
\]

We now construct \(C_{4k} \)-frame of \(K_{4s+4} \otimes I_4 \) as follows:

Let \(C_{4k}^{\infty, 1} = \sum_{i=0}^{4} \begin{cases} 1 \end{cases} F_1(X_i, X_{i+1}) \cup F_1(X_0, X_{4s+2}) \) and

\[
C_{4k}^{\infty, 2} = \sum_{i=0}^{4} \begin{cases} 1 \end{cases} F_3(X_i, X_{i+1}) \cup F_3(X_0, X_{4s+2}).
\]
For $i \in \mathbb{Z}_{4s+3}$,

\[C_{4k}^{i,1} = F_0(X_\infty, X_i) \cup F_0(X_i, X_{i+1}) \cup \bigcup_{j=1}^{4s+1} F_0(X_{i+j}, X_{i-j}) \]

\[\bigcup_{j=1}^{4s+1} (F_1(X_{i-j}, X_{i+j})) \cup F_1(X_{i+2s+1}, X_\infty) \]

\[C_{4k}^{i,2} = F_2(X_\infty, X_i) \cup F_2(X_i, X_{i+1}) \cup \bigcup_{j=1}^{4s+1} F_2(X_{i+j}, X_{i-j}) \]

\[\bigcup_{j=1}^{4s+1} (F_3(X_{i-j}, X_{i+2s+1})) \cup F_3(X_{i+j+1}, X_\infty), \]

where the addition in the subscripts are taken modulo $(4s+3)$. Clearly, each $C_{4k}^{i,j}$ is a partial C_{4k}-factor of $K_{4s+4} \otimes I_4$ and hence \{\(C_{4k}^{i,1}, C_{4k}^{i,2}, C_{4k}^{\infty,1}, C_{4k}^{\infty,2} ; i \in \mathbb{Z}_{4s+3} \}\) gives a C_{4k}-frame of $K_{4s+4} \otimes I_4$. \qed

Lemma 4.16. For $k \equiv 1 \pmod{4}$, the graph $K_{k+1} \otimes I_4$ has a C_{4k}-frame.

Proof. Let $V(K_{4s+2} \otimes I_4) = \{ X_i/i \in \mathbb{Z}_{4s+1} \} \cup X_\infty$, where $X_i = \{ i_t; 1 \leq t \leq 4 \}$ and $X_\infty = \{ \infty_t / 1 \leq t \leq 4 \}$. Then $E(K_{4s+2} \otimes I_4) = \bigcup_{i=0}^{4s} F_i(X_i, X_j)$.

We now construct C_{4k}-frame of $K_{4s+2} \otimes I_4$ as follows:

Let $C_{4k}^{\infty,1} = \bigcup_{i=0}^{4s} F_i(X_i, X_{i+1}) \cup F_1(X_0, X_{4s})$ and $C_{4k}^{\infty,2} = \bigcup_{i=0}^{4s} F_i(X_i, X_{i+1}) \cup F_3(X_0, X_{4s})$.

For \(i \in \mathbb{Z}_{4s+1} \),

\[
C_{4k}^{4k} = F_0(X_\infty, X_i) \cup F_0(X_i, X_{i+1}) \cup \bigcup_{j=1}^\infty \left(F_1(X_{j-2j+1}, X_{j+2j}) \cup F_1(X_{j+2j-1}, X_{j-2j+1}) \cup F_2(X_{j+2j}, X_{j-2j}) \right)
\]

\[
C_{4k}^{4k} = F_1(X_\infty, X_i) \cup F_2(X_i, X_{i+1}) \cup \bigcup_{j=1}^\infty \left(F_3(X_{j-2j+1}, X_{j+2j}) \cup F_3(X_{j+2j-1}, X_{j-2j+1}) \cup F_3(X_{j+2j}, X_{j-2j}) \right)
\]

where the addition in suffixes are taken modulo \((4s + 1)\).

Clearly, each \(C_{4k}^{4k} \) is a partial \(C_{4k} \)-factor of \(K_{4s+2} \otimes I_4 \) and hence \(\{ C_{4k}^{4k}, C_{4k}^{4k} \} \)

\(C_{4k}^{4k}, C_{4k}^{4k}; i \in \mathbb{Z}_{4s+1} \) gives a \(C_{4k} \)-frame of \(K_{4s+2} \otimes I_4 \). \(\square \)

Lemma 4.17. The graph \(K_{25} \otimes I_2 \) has a \(C_6 \)-frame.

Proof. Let \(V(K_{25}) = \bigcup_{i=0}^6 B_i \cup \{ \infty \} \), where \(B_i = \{ 6i + j, 1 \leq j \leq 6 \} \), \(V(I_2) = \bigcup_{i=0}^2 \{ 2i, 2j \} \), \(D_i, \) where \(D_i = I + 1 \) and \(V(K_{25} \otimes I_2) = \bigcup_{i=0}^6 B_i \cup \{ \infty \times I_2 \} \),

where \(B_i \) and \(D_i \) are defined as above. Find a new graph \(G \) from \(K_{25} \otimes I_2 \) by identifying each \(B_i \)

\(i \in \mathbb{Z}_4, l \in \mathbb{Z}_2 \) into a single vertex \(b_i^l \) and join two vertices \(b_i^l \) and \(b_i^{l+1} \) by an edge if there exists a complete bipartite graph \(K_{|B_i^l|, B_i^{l+1}} \). \(\cong \mathbb{Z}_{6,6} \) between \(B_i^l \) and \(B_i^{l+1} \) in \(K_{25} \otimes I_2 \). The resulting graph \(B \) is isomorphic to \(K_4 \otimes I_2 \).

By Theorem 4.5, \(K_4 \otimes I_2 \) has a \(C_3 \)-frame \(\{ F_0, F_1, F_2, F_3 \} \) where \(F_i \) is a partial \(C_3 \)-factor which does not contain the vertices of \(i \)-th partite set of \(K_4 \otimes I_2 \),
4.2. C_{2k}-frame of $K_m \otimes I_n$

$i = 0, 1, 2, 3$. While we blow up, corresponding to each $F_i, i = 0, 1, 2, 3$, we have $2K_{6,6,6}$ in $K_{24} \otimes I_2$ which does not contain the vertices of $B_i \times I_2$ in $K_{24} \otimes I_2$.

Now the vertices of $B_i \times I_2$ along with $\infty \otimes I_2$ form a $K_{|B_i \cup \infty|} \otimes I_2 \cong K_7 \otimes I_2$ in $K_{25} \otimes I_2$ which cover the rest of the vertices of $K_{25} \otimes I_2$ that are not covered by the above $2K_{6,6,6}$. By Theorem 4.1, $2K_{6,6,6}$ has a C_6-factorization consisting of 6 C_6-factors and by Lemma 4.13, $K_7 \otimes I_2$ has a C_6-frame consisting of 7 partial C_6-factors. Note that the 6 C_6-factors of $2K_{6,6,6}$ and 6 partial C_6-factors of $K_7 \otimes I_2$ together give 6 partial C_6-factors of $K_{25} \otimes I_2$. The last partial C_6-factor of $K_7 \otimes I_2$ with missing partite set $\infty \times I_2$ in $K_{25} \otimes I_2$ is kept aside for future purpose. By continuing the above process for each $F_i, 0 \leq i \leq 3$, we have 6 partial C_6-factors of $K_{25} \otimes I_2$ and last partial C_6-factor of $K_{|B_i \cup \infty|} \otimes I_2 \cong K_7 \otimes I_2$, with missing partite set $\infty \times I_2$ in $K_{25} \otimes I_2$. By taking the union of all last partial C_6-factors of $K_{|B_i \cup \infty|} \otimes I_2, 0 \leq i \leq 3$ with missing partite set $\infty \times I_2$, which are kept aside for future purpose, we have the last partial C_6-factor of $K_{25} \otimes I_2$. Totally we get 25 partial C_6-factors of $K_{25} \otimes I_2$ and hence a C_6-frame exists.

□

Lemma 4.18. For $s \geq 0, k \geq 2, n \equiv 0 \pmod{2}$ and $t \equiv 1 \pmod{2}$, the graph $K_{2^{s+1}k+1} \otimes I_n$ has a C_{2k}-frame.

Proof. Case(i). $n = 2$ and $t = 1$.

We prove this theorem by induction on s. For $s = 0$, the graph $K_{2k+1} \otimes I_2$ has a C_{2k}-frame by the Lemma 4.13. For $s = 1$, the graph $K_{8k+1} \otimes I_2$ has a C_{2k}-frame by the Lemmas 4.11, 4.13 and 4.17 (for the case $k = 3$). Assume that, $K_{2^{n+1}k+1} \otimes I_2$ has a C_{2k}-frame for all $q \leq s - 1$. Now consider

$$K_{2^{s+1}k+1} \otimes I_2 = K_{2^{s}2^{s-1}k+1} \otimes I_2 = K_{(4)2^{s-1}k+1} \otimes I_2.$$

By the induction assumption, the existence of C_{2k}-frame of the graph on RHS is same as that of Lemma 4.11, by taking $m = 2^{2s-1}k$.
Case (ii). $n \equiv 0 \pmod{2} > 2$ and $t \equiv 1 \pmod{2} > 1$.

Proof follows from Lemmas 4.10, 4.12 and Case (i). \qed

Lemma 4.19. For $s \geq 0$, $n \equiv 0 \pmod{2}$ and $k, t \equiv 1 \pmod{2}$, the graph $K_{2^{2s+1}k+1} \otimes I_n$ has a C_{4k}-frame.

Proof. Case (i). $n = 2$, and $t = 1$.

We prove this theorem by induction on s. For $s = 0$, the graph $K_{2k+1} \otimes I_2$ has a C_{4k}-frame by the Lemma 4.14. For $s = 1$, the graph $K_{8k+1} \otimes I_2$ has a C_{4k}-frame by the Lemmas 4.11 and 4.14. Assume that, $K_{2^{2q+1}k+1} \otimes I_2$ has a C_{4k}-frame for all $q \leq s - 1$. Now consider

$$K_{2^{2s+1}k+1} \otimes I_2 = K_{2^{2s-1}k+1} \otimes I_2$$

By the induction assumption, the existence of C_{4k}-frame of the graph on RHS is same as that of Lemma 4.11, by taking $m = 2^{2s-1}k$.

Case (ii). $n \equiv 0 \pmod{2} > 2$ and $t \equiv 1 \pmod{2} > 1$.

Proof of the case follows from Lemmas 4.10, 4.12 and Case (i). \qed

Lemma 4.20. For $s \geq 0$, $n \equiv 0 \pmod{4}$ and $k, t \equiv 1 \pmod{2}$, the graph $K_{2^{2s}k+1} \otimes I_n$ has a C_{4k}-frame.

Proof. Case (i). $n = 4$ and $t = 1$.

We prove this theorem by induction on s. For $s = 0$, the graph $K_{k+1} \otimes I_4$ has a C_{4k}-frame by the Lemma 4.15 or 4.16 according as $k \equiv 3 \pmod{4}$ or $k \equiv 1 \pmod{4}$. For $s = 1$, the graph $K_{4k+1} \otimes I_4$ has a C_{4k}-frame by the Lemmas 4.11, 4.15 and 4.16. Assume that, $K_{2^{2q}k+1} \otimes I_4$ has a C_{4k}-frame for all $q \leq s - 1$. Now consider

$$K_{2^{2s}k+1} \otimes I_4 = K_{2^{2s-2}k+1} \otimes I_4$$

By the induction assumption, the existence of C_{4k}-frame of the graph on RHS is same as that of Lemma 4.11, by taking $m = 2^{2s-2}k$. \qed
By the induction assumption, the existence of C_{4k}-frame of the graph on RHS is same as that of Lemma 4.11, by taking $m = 2^{2s-2k}$.

Case(ii). $n \equiv 0 \pmod{4} > 4$ and $t \equiv 1 \pmod{2} > 1$.

Proof of the case follows from Lemmas 4.10, 4.12 and Case(i). \hfill \Box

Theorem 4.21. If $m \equiv 1 \pmod{2}$ and $n \equiv 0 \pmod{2k}$, then there exists a C_{4k}-frame of $K_m \otimes I_n$.

Proof. Let $m = 2s + 1$, $n = 2kt$. Let $F = \{F_0, F_1, \ldots, F_{2s}\}$ be a near 1-factorization of K_{2s+1} such that the near 1-factor F_i does not contain the vertex i. Then $K_{2s+1} \otimes I_n = (F_0 \otimes F_1 \otimes F_2 \otimes \cdots \otimes F_{2s}) \otimes I_n = \bigotimes_{j=0}^{2s} F_j \otimes I_n$. Clearly, each $F_i \otimes I_n$ is an n-regular subgraph of $K_{2s+1} \otimes I_n$ containing all vertices except the vertices of jth partite set. Also $F_i \otimes I_n \cong sK_{n,n}$. By Theorem 4.4, each $F_i \otimes I_n$ has k partial C_{4k}-factors of $K_{2s+1} \otimes I_n$ and hence the theorem. \hfill \Box

Theorem 4.22. If $m \equiv 0 \pmod{2}$ and $n \equiv 0 \pmod{4k}$, then there exists a C_{4k}-frame of $K_m \otimes I_n$.

Proof. Let $m = 2s$ and $n = 4kt$. By Theorem 4.6, let $\{C^i_4, C^2_4, \ldots, C^s_4\}$ be a C_4-frame of $K_{2s} \otimes I_4$, where C^i_4 is a partial C_4-factor of $K_{2s} \otimes I_4$. Then

\[
K_m \otimes I_n \cong K_{2s} \otimes I_{4kt} \cong (K_{2s} \otimes I_4) \otimes I_{kt} \\
\cong (C^i_4 \otimes C^2_4 \otimes \cdots \otimes C^s_4) \otimes I_{kt} \\
\cong (C^i_4 \otimes I_{kt}) \otimes (C^2_4 \otimes I_{kt}) \otimes \cdots \otimes (C^s_4 \otimes I_{kt})
\]

By Theorem 4.3, each $C^i_4 \otimes I_{kt}$ gives kt partial C_{4k}-factor of $K_m \otimes I_n$, since $C_4 \otimes I_{kt} \cong K_{2kt,2kt}$ and hence the theorem. \hfill \Box

4.3 C_{4p}-frame of $(K_m \otimes I_n)(\lambda)$

This section deals with the existence of C_{4p}-frame of complete multipartite graph.
Lemma 4.23. The graph $K_5 \otimes I_2$ has a C_8-frame.

Proof. Let $V(K_5 \otimes I_2) = \{i_1, i_2; i \in Z_4\} \cup \{\infty_1, \infty_2\}$. We now construct C_8-frame of $K_5 \otimes I_2$ as follows:

$$C_8^1 = (1, 2, 3, 2, 1, \infty_1, 3, 1, \infty_2, 2, 1)$$
$$C_8^2 = (0, 1, 2, \infty_1, 3, 2, 0, \infty_2, 2, 3)$$
$$C_8^3 = (0, 1, 2, \infty_2, 1, 3, 1, 1, 2, 0, \infty_1)$$
$$C_8^4 = (0, 1, 2, \infty_1, 1, 1, 0, 2, 1, 2, \infty_2)$$
$$C_8^\infty = (0, 1, 2, 2, 0, 2, 3, 1, 2, 3, 1, 1)$$

Clearly, each $C_8^i, 1 \leq j \leq 4, j = \infty$, is a partial C_8-factor of $K_5 \otimes I_2$ and hence a C_8-frame exists.

Lemma 4.24. The graph $K_{17} \otimes I_2$ has a C_8-frame.

Proof. Let $V(K_{17} \otimes I_2) = \{i_1, i_2; i \in Z_{16}\} \cup \{\infty_1, \infty_2\}$. We now construct a C_8-frame of $K_{17} \otimes I_2$ as follows:

$$C_8^0 = (11, 8, 12, 1, 7, 2, 13, 6, 14, 1, 10, 1)(11, 8, 12, 7, 1, 13, 6, 2, 14, 2, 10)$$
$$C_8^2 = (\infty, 5, 2, 15, 4, 2, 1, 3, 2, 1, 9)$$
$$C_8^1 = (12, 9, 13, 8, 14, 7, 15, 11)(12, 9, 13, 8, 14, 7, 2, 15, 11)$$
$$C_8^3 = (\infty, 6, 2, 1, 5, 2, 1, 4, 3, 1, 10)$$
$$C_8^2 = (13, 9, 14, 1, 9, 8, 1, 12, 1)(13, 9, 14, 1, 9, 8, 2, 12)$$
$$C_8^3 = (\infty, 7, 1, 6, 2, 3, 5, 4, 1, 11)$$
$$C_8^4 = (14, 11, 15, 10, 0, 9, 1, 13)(14, 11, 15, 10, 0, 9, 2, 13)$$
$$C_8^4 = (\infty, 8, 2, 1, 7, 2, 4, 6, 2, 12)$$
$$C_8^5 = (15, 12, 0, 11, 1, 1, 10, 2, 14)(15, 12, 0, 11, 1, 1, 10, 2, 14)$$
$$C_8^5 = (\infty, 9, 2, 3, 8, 5, 7, 6, 13)$$
$$C_8^0 = (0, 1, 3, 2, 1, 12, 2, 1, 11, 3, 1, 15)(0, 1, 3, 2, 1, 12, 2, 1, 11, 3, 15)$$
$$C_8^0 = (\infty, 10, 4, 9, 2, 6, 8, 1, 7, 14)$$
Clearly, each C_ℓ, $0 \leq \ell \leq 15$, $\ell = \infty$ is a partial C_8-factor of $K_{17} \otimes I_2$ and hence a C_8-frame exists.
Lemma 4.25. For \(s \geq 0, \ t \equiv 1 \pmod{2} \) and \(n \equiv 0 \pmod{2} \), the graph \(K_{2^{2s+2}t+1} \otimes I_n \) has a \(C_8 \)-frame.

Proof. Case(i). \(n = 2 \) and \(t = 1 \).

The proof is by induction on \(s \). For \(s = 0 \), the graph \(K_5 \otimes I_2 \) has a \(C_8 \)-frame by the Lemma 4.23. For \(s = 1 \), the graph \(K_{17} \otimes I_2 \) has a \(C_8 \)-frame by Lemma 4.24. For \(s = 2 \), the graph \(K_{65} \otimes I_2 \) has a \(C_8 \)-frame by Lemmas 4.24 and 4.11. Assume that, \(K_{2^{2s+2}t+1} \otimes I_2 \) has a \(C_8 \)-frame for all \(q \leq s - 1 \). Now consider

\[
K_{2^{2s+2}t+1} \otimes I_2 = K_{2^{2s+1}} \otimes I_2
= K_{4(2^{2s})+1} \otimes I_2.
\]

By the induction assumption and Lemma 4.11 the graph on RHS has a \(C_8 \)-frame.

Case(ii). \(n \equiv 0 \pmod{2} > 2 \) and \(t \equiv 1 \pmod{2} > 1 \).

Proof of the case follows from Lemmas 4.10, 4.12 and Case (i). □

Theorem 4.26. If \(m \equiv 1 \pmod{4} \geq 5 \) and \(n \equiv 2 \pmod{4} \), then there exists a \(C_8 \)-frame of \(K_m \otimes I_n \).

Proof. Let \(m = 4q + 1 \) for some \(q \geq 1 \). If \(q \) is odd, proof follows from Lemma 4.18. If \(q \) is even; say \(q = 2r \), then \(m = 8r + 1 \). The proof follows from Lemmas 4.18, 4.25, since any integer \(8r + 1, r \geq 1 \) can be written as either \(2^{2s+3}t + 1 \) or \(2^{2s+2}t + 1 \), where \(t \) is odd and \(s \geq 0 \). □

Theorem 4.27. If \(p \geq 1 \) is odd integer, \(m \equiv 1 \pmod{4} \) and \(n \equiv p \pmod{2p} \), then there exists a \(C_{4p} \)-frame of \((K_m \otimes I_n)(2) \).

Proof. Let \(m = 4s + 1, s \geq 1 \) and \(n = tp \), where \(t \geq 1 \) is an odd integer. By Theorem 4.2, let \(C = \{C_4^1, C_4^2, \ldots, C_4^{4s+1} \} \) be a near \(C_4 \)-factorization of \(K_{4s+1}(2) \),
4.3. C_{4p}-frame of $(K_m \otimes I_n)(\lambda)$

where each C_i is a near C_4-factor of $K_{4s+1}(2)$. Then

$$(K_m \otimes I_n)(2) = (K_{4s+1} \otimes I_{lp})(2) = (C_1 \oplus C_2 \oplus \ldots \oplus C_{4s+1}^4) \otimes I_{lp}$$

By Theorem 4.3, each $C_i \otimes I_{lp}$ gives pt partial C_{4p}-factor of $K_m \otimes I_n$, since $C_4 \otimes I_{lp} \cong K_{2pt}$. This completes the proof.

Theorem 4.28. If $m \equiv 1 \pmod{4k}$, then there exists a C_{4k}-frame of $(K_m \otimes I_n)(2)$, $n \geq 1$ is an odd integer.

Proof. Let $m = 4ks + 1$. By Theorem 4.2, let $C = \{C_4, C_4^2, \ldots, C_4^{4s+1}\}$ be a near C_{4k}-factorization of $K_{4ks+1}(2)$, where each C_{4k} is a near C_{4k}-factor of $K_{4ks+1}(2)$. Then

$$(K_m \otimes I_n)(2) = (K_{4ks+1} \otimes I_n)(2) = (C_{4k} \oplus C_{4k}^2 \oplus \ldots \oplus C_{4k}^{4s+1}) \otimes I_n$$

By Theorem 4.8, each $C_{4k} \otimes I_n$ has a C_{4k}-frame. This completes the proof.

Theorem 4.29. Let $m \geq 3$. There exists a C_8-frame of $K_m \otimes I_n$ if and only if

(i) $(m - 1)n \equiv 0 \pmod{8}$ and

(ii) at least one of m, n is even.

Proof. Necessity follows from Lemma 4.9. Sufficiency can be proved in the following three cases.

(i) $m \equiv 1 \pmod{2}, n \equiv 0 \pmod{4}$;

(ii) $m \equiv 0 \pmod{2}, n \equiv 0 \pmod{8}$;
(iii) \(m \equiv 1 \pmod{4}, n \equiv 2 \pmod{4} \).

The existence of \(C_8 \)-frame of \(K_m \otimes I_n \) follows from Theorems 4.21, 4.22 and 4.26 respectively. \(\square \)

Theorem 4.30. Let \(m \geq 3 \) and \(p \) be a prime. There exists a \(C_{4p} \)-frame of \((K_m \otimes I_n)(\lambda)\) if and only if

1. \((m - 1)n \equiv 0 \pmod{4p}\) and
2. at least one of \(m, n \) must be even, when \(\lambda \) is odd.

Proof. Necessity follows from Lemma 4.9. We prove the sufficiency in two cases.

Case 1: \(\lambda = 1 \). The values of \(m \) and \(n \) fall in one of the following

(a) \(m \equiv 1 \pmod{2}, n \equiv 0 \pmod{2p}; \)

(b) \(m \equiv 0 \pmod{2}, n \equiv 0 \pmod{4p}; \)

(c) \(m \equiv 1 \pmod{2p}, n \equiv 0 \pmod{2}; \)

(d) \(m \equiv 1 \pmod{p}, n \equiv 0 \pmod{4}. \)

If \(p = 2 \), proof follows from Theorem 4.29. If \(p \) is an odd prime, proof for 1(a) and 1(b) follows from Theorems 4.21 and 4.22 respectively.

Proof of 1(c) follows from Lemma 4.19 or Lemma 4.18 according as any integer \(m = 2ps + 1, p \geq 3 \) can be written as either \(2^{2q+1}pt + 1 \) or \(2^{2q}pt + 1 \), where \(t > 0 \) is an odd integer and \(q \geq 0 \) is an integer.

Proof for 1(d) follows from Lemma 4.20 or Lemma 4.19 according as any integer \(m = ps + 1, p \geq 3 \) can be written as either \(2^{2q}pt + 1 \) or \(2^{2q-1}pt + 1 \), where \(t > 0 \) is an odd integer and \(q \geq 0 \) is an integer.

Case 2: \(\lambda = 2 \). Then the values of \(m \) and \(n \) fall in one of the following, in addition to the choices of Case 1.

(e) \(m \equiv 1 \pmod{4}, n \equiv p \pmod{2p}; \)
(f) \(m \equiv 1 \pmod{4p} \), \(n \geq 1 \) is an odd integer.

The existence of \(C_{4p} \)-frame of \((K_m \otimes I_n)(2) \) for 2(e) and 2(f) follow from Theorems 4.27 and 4.28 respectively. From the Case 1, \(C_{4p} \)-frame of \(K_m \otimes I_n \) and hence for \((K_m \otimes I_n)(2) \) exist from Cases 1 and 2, \(C_{4p} \)-frame of \((K_m \otimes I_n)(2) \) and hence for \((K_m \otimes I_n)(2s) \) exists since \(\lambda = 2s \) is even.

\[
\begin{align*}
(f) & \quad m \equiv 1 \pmod{4p}, n \geq 1 \text{ is an odd integer.} \\
& \text{The existence of } C_{4p}\text{-frame of } (K_m \otimes I_n)(2) \text{ for } 2(e) \text{ and } 2(f) \text{ follow from Theorems 4.27 and 4.28 respectively. From the Case 1, } C_{4p}\text{-frame of } K_m \otimes I_n \text{ and hence for } (K_m \otimes I_n)(2) \text{ exist from Cases 1 and 2, } C_{4p}\text{-frame of } (K_m \otimes I_n)(2) \text{ and hence for } (K_m \otimes I_n)(2s) \text{ exists since } \lambda = 2s \text{ is even.} \quad \Box
\end{align*}
\]

4.4 Conclusion

The results of this chapter provide a complete solution to the existence of \(C_{4p} \)-frame of complete multipartite multigraph \((K_m \otimes I_n)(\lambda) \), when \(p \) is a prime. Also we establish the following results.

(i). the necessary conditions given in Lemma 4.9 for the existence of \(C_{2k} \)-frame of \(K_m \otimes I_n \) are sufficient when \(m = 2^{2s+1}kt + 1; n \equiv 0 \pmod{2} \) where \(s \geq 0, k \geq 2 \) and \(t \equiv 1 \pmod{2} \);

(ii). the necessary conditions \(m \geq 3, (m - 1)n \equiv 0 \pmod{4k} \) and at least one of \(m, n \) must be even for the existence of \(C_{4k} \)-frame of \(K_m \otimes I_n \) stated in Lemma 4.9 are sufficient when

\[
\begin{align*}
(i) & \quad m = 2^{2s+1}kt; n \equiv 0 \pmod{2} \text{ where } s \geq 0, k, t \equiv 1 \pmod{2}; \\
(ii) & \quad m = 2^{2s}kt; n \equiv 0 \pmod{4} \text{ where } s \geq 0, k, t \equiv 1 \pmod{2}; \\
(iii) & \quad m \equiv 1 \pmod{2}; n \equiv 0 \pmod{2k}; \\
(iv) & \quad m \equiv 0 \pmod{2}; n \equiv 0 \pmod{4k}.
\end{align*}
\]

In fact, the results presented here seems to be the first general result in this direction and also generalizes the one given by Cao. et.al [22]. Further the problem of decomposing the complete multipartite graph into cycles of length \(k \) is still open in general. Numerous partial solutions of this problem are known [6, 10, 11, 23, 24, 52, 66, 74, 77–80]. In line with them, the results of this chapter
also give a partial solution to the existence of C_{2k}-decomposition of complete multipartite graphs.