List of Tables

1.1 Example of perovskites belonging to different crystallographic structures. * denote non-oxide perovskite materials. .. 4
1.2 Lists of perovskites of different physical properties ... 6
1.3 Few example of perovskites with their novel physical features 6
1.4 Lists of some multiferroic perovskite .. 9
1.5 Variety of magnetic properties of different organic-inorganic hybrids. Reproduced from Ref. [47] .. 19
3.1 Selected bond lengths and bond angles for SrRuO$_3$ and CaRuO$_3$ 60
3.2 Magnetic moments at different sites for SrRuO$_3$ and CaRuO$_3$ from LDA calculations . 63
3.3 Relative changes in the distortion of Sr-O, Sr-Sr, and Ru-O bonds in absence and presence of magnetic ordering ... 64
4.1 Magnetic Moments at Co, O1 and O2 sites for BiCoO$_3$ at AP, as obtained in spin-polarized GGA calculations in LMTO basis for FM and C-AFM spin arrangements. The entries within the bracket denote the numbers obtained in plane wave basis. 82
4.2 Total energies (in eV) per formula unit calculated for the discussed HP phases in literature, orthorhombic phase as predicted in the experimental study of Ref.[10], the cubic phase predicted in theoretical study in Ref.[7] and the tetragonal phase predicted in the theoretical study in Ref.[9] .. 83
5.1 Energy-minimized structural parameters of Sr$_3$NiPtO$_6$, Sr$_3$CuPtO$_6$ and Sr$_3$NiIrO$_6$. Lattice constants have been kept fixed at the experimental values [12, 24, 16]. 94
5.2 Selected bond lengths and bond angles for the optimized crystal structure of Sr$_3$NiPtO$_6$, Sr$_3$CuPtO$_6$ and Sr$_3$NiIrO$_6$.

5.3 Magnetic Moments at B, B' and O sites, as obtained in spin-polarized GGA calculations.

5.4 List of dominant hopping interactions for the three compounds. In case of Sr$_3$NiPtO$_6$, hoppings are defined between Ni-d_{xz}/d_{yz} and Ni-d_{xz}/d_{yz}. In case of Sr$_3$CuPtO$_6$, hoppings are defined between Cu-d_{xz} and Cu-d_{yz}.

5.5 List of dominant hopping interactions for Sr$_3$NiIrO$_6$. Hoppings are defined between Ni-d_{xz}/d_{yz} and Ir-$t_{2g}^{(3)}$ (t_1) as well as between Ni-d_{xz}/d_{yz} and Ni-d_{xy}/d_{yz} (t_3), and between Ir-$t_{2g}^{(3)}$ and Ir-$t_{2g}^{(3)}$ (t_3, t_3, t_4).

5.6 Spin and orbital moments in μ_B as obtained in GGA+SO calculations for the three compounds. The magnetic anisotropy energies are also listed.

6.1 Various atomic positions of the pristine Zn$_2$VO(PO$_4$)$_2$ and Ti-substituted Zn$_6$TiV$_3$O$_4$(PO$_4$)$_8$ compounds.

6.2 The TM-O bond lengths and O-TM-O bond angles in pristine (Zn$_2$VO(PO$_4$)$_2$) and Ti-substituted (Zn$_6$TiV$_3$O$_4$(PO$_4$)$_8$) compounds.

6.3 Dominant hopping interactions for the pristine and Ti-substituted compounds. Hopping interactions having magnitude less than 1 meV have been neglected.

7.1 The theoretically optimized atomic positions compared to the experimentally determined data. During the optimization the lattice constants are fixed at experimentally measured values, $a=30.28$ Å, $b=4.86$ Å, $c=6.29$ Å, $\beta=99.50^\circ$.

7.2 Bond lengths (Å) and Bond angles (°) for the theoretically optimized structure compared to the experimentally determined structure.

7.3 Magnetic Moments (in μ_B) at different sites as obtained in spin-polarized GGA calculation.

7.4 List of dominant Hopping Interactions for Mn(C$_4$H$_4$C)$_4$.

8.1 The optimized theoretical crystal structure for ambient pressure, and for 2.94% and 7.58% reduced volumes. During the optimization the lattice parameters are kept fixed at the mentioned values. The space group is in all three cases I4₁/a. The atomic coordinates are given in IORIGIN=1 setting.