CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Schiff bases</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Biological Importance of Schiff bases</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Schiff base metal complexes</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.4 Copper</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.5 Nickel</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.6 Vanadium</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.7 Cobalt</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.8 Effect of complexation on Biological Activity</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.9 Antimicrobial Activity</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.10 Review of Literature</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>SCOPE OF THE PRESENT INVESTIGATION</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>EXPERIMENTAL METHODS</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>3.1 Chemicals</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>3.2 Purification of Solvents</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>3.3 Synthesis of Ligands</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>3.4 Synthesis of binuclear complexes</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>3.4.1 Synthesis of Copper(II) complexes</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>3.4.2 Synthesis of Nickel(II) complexes</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>3.4.3 Synthesis of Oxovanadium(IV) complexes</td>
<td>49</td>
</tr>
</tbody>
</table>
3.4.4 Synthesis of Cobalt(II) complexes 51
3.5 Chemical methods for the characterization of complexes 54
3.6 Instrumental Methods 56

References 61

4 RESULTS AND DISCUSSION 62

4.1 CHARACTERIZATION OF THE LIGANDS 62

4.1.1 Analytical Data of the Binucleating Schiff Base Ligands 63
4.1.2 IR Spectral Analyses 63
4.1.3 Electronic Spectral Analyses 67
4.1.4 1H NMR Spectral Analyses 72
4.1.5 Mass Spectral Analyses 75
4.1.6 Thermal Analyses 76

4.2 CHARACTERISATION OF BINUCLEAR COPPER(II) COMPLEXES 79

4.2.1 Elemental Analyses 79
4.2.2 Metal Analyses 79
4.2.3 Molar Conductance Studies 79
4.2.4 Infrared Spectral Analyses 80
4.2.5 Electronic Spectral Analyses 84
4.2.6 Electrochemical Properties of the Complexes 88
4.2.7 Thermal Analyses (TGA and DTA) 92
4.2.8 EPR Spectral Analyses 95
4.2.9 Magnetic Properties of the Complexes 99
4.2.10 Conclusions 102
4.3 CHARACTERISATION OF BINUCLEAR NICKEL(II) COMPLEXES

4.3.1 Elemental Analysis
4.3.2 Metal Analyses
4.3.3 Molar Conductance Studies
4.3.4 Infrared Spectral Analyses
4.3.5 Electronic Spectral Analyses
4.3.6 Electrochemical Properties of the Complexes
4.3.7 Thermal Analyses
4.3.8 Conclusions

4.4 CHARACTERISATION OF BINUCLEAR OXOVANADIUM(IV) COMPLEXES

4.4.1 Elemental Analyses
4.4.2 Metal Analyses
4.4.3 Molar Conductance Studies
4.4.4 Infrared Spectral Analyses
4.4.5 Electronic Spectral Analysis
4.4.6 Electrochemical Properties of the Complexes
4.4.7 Thermal Analyses
4.4.8 EPR Spectral Analyses
4.4.9 Magnetic moment Studies
4.4.10 Conclusions
4.5 CHARACTERISATION OF BINUCLEAR COBALT(II) COMPLEXES

4.5.1 Elemental Analyses

4.5.2 Metal Analyses

4.5.3 Molar Conductance Studies

4.5.4 IR Spectral Analyses

4.5.5 Electronic Spectral Analyses

4.5.6 Thermal Analyses

4.5.7 Magnetic Properties of the Complexes

4.5.8 Conclusions

4.6 ANTIMICROBIAL ACTIVITIES

References

5 SUMMARY
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Some classes of Schiff base Ligands</td>
<td>2</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>IR spectra of H_2L^1</td>
<td>65</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>IR spectra of H_2L^2</td>
<td>65</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>IR spectra of H_2L^3</td>
<td>66</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>IR spectra of H_2L^4</td>
<td>66</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>IR spectra of H_2L^5</td>
<td>67</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Electronic spectra of H_2L^2</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Electronic spectra of H_2L^3</td>
<td>70</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>Electronic spectra of H_2L^4</td>
<td>70</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>Electronic spectra of H_2L^5</td>
<td>71</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>Electronic spectra of H_2L^6</td>
<td>71</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>NMR Spectra of H_2L^1</td>
<td>73</td>
</tr>
<tr>
<td>Fig. 13</td>
<td>NMR Spectra of H_2L^2</td>
<td>73</td>
</tr>
<tr>
<td>Fig. 14</td>
<td>NMR Spectra of H_2L^3</td>
<td>74</td>
</tr>
<tr>
<td>Fig. 15</td>
<td>NMR Spectra of H_2L^4</td>
<td>74</td>
</tr>
<tr>
<td>Fig. 16</td>
<td>NMR Spectra of H_2L^5</td>
<td>75</td>
</tr>
<tr>
<td>Fig. 17</td>
<td>Mass Spectra of H_2L^3</td>
<td>76</td>
</tr>
<tr>
<td>Fig. 18</td>
<td>TG / DTA curves of H_2L^1</td>
<td>77</td>
</tr>
<tr>
<td>Fig. 19</td>
<td>TG / DTA curves of H_2L^3</td>
<td>78</td>
</tr>
<tr>
<td>Fig. 20</td>
<td>IR Spectra of $[Cu_2(L^1)_2]$</td>
<td>82</td>
</tr>
<tr>
<td>Fig. 21</td>
<td>IR Spectra of $[Cu_2(L^2)_2]$</td>
<td>82</td>
</tr>
<tr>
<td>Fig. 22</td>
<td>IR Spectra of $[Cu_2(L^3)_2]$</td>
<td>83</td>
</tr>
</tbody>
</table>
Fig. 23 IR Spectra of [Cu₂(L⁴)₂] 83
Fig. 24 IR Spectra of [Cu₂(L⁵)₂] 84
Fig. 25 Electronic Spectra of [Cu₂(L¹)₂] 86
Fig. 26 Electronic Spectra of [Cu₂(L²)₂] 86
Fig. 27 Electronic Spectra of [Cu₂(L³)₂] 87
Fig. 28 Electronic Spectra of [Cu₂(L⁴)₂] 87
Fig. 29 Electronic Spectra of [Cu₂(L⁵)₂] 88
Fig. 30 Cyclic Voltammogram of Reduction Process [Cu₂(L¹)₂] 89
Fig. 31 Cyclic Voltammogram of Reduction Process [Cu₂(L²)₂] 90
Fig. 32 Cyclic Voltammogram of Reduction Process [Cu₂(L³)₂] 90
Fig. 33 Cyclic Voltammogram of Reduction Process [Cu₂(L⁴)₂] 91
Fig. 34 Cyclic Voltammogram of Reduction Process [Cu₂(L⁵)₂] 91
Fig. 35 TG / DTA curves of [Cu₂(L¹)₂] 94
Fig. 36 TG / DTA curves of [Cu₂(L²)₂] 94
Fig. 37 EPR spectra of [Cu₂(L¹)₂] 97
Fig. 38 EPR spectra of [Cu₂(L³)₂] 98
Fig. 39 EPR spectra of [Cu₂(L⁴)₂] 98
Fig. 40 Temperature dependence of magnetic properties for [Cu₂(L¹)₂] 101
Fig. 41 Proposed structures for the Copper(II)complexes. 103
Fig. 42 IR Spectra of [Ni₂(L¹)₂] 107
Fig. 43 IR Spectra of [Ni₂(L²)₂] 107
Fig. 44 IR Spectra of [Ni₂(L³)₂] 108
Fig. 45 IR Spectra of [Ni₂(L⁴)₂] 108
Fig. 46 IR Spectra of [Ni₂(L⁵)₂] 109
Fig. 47 Electronic Spectra of [Ni₂(L²)₂] 111
Fig. 48 Electronic Spectra of [Ni₂(L³)₂] 111
Fig. 49 Electronic Spectra of [Ni₂(L³)₂] 112
Fig. 50 Electronic Spectra of [Ni₂(L⁴)₂] 112
Fig. 51 Electronic Spectra of [Ni₂(L⁵)₂] 113
Fig. 52 Cyclic Voltammogram of (Reduction Process) [Ni₂(L¹)₂] 114
Fig. 53 Cyclic Voltammogram of (Reduction Process) [Ni₂(L³)₂] 115
Fig. 54 Cyclic Voltammogram of (Reduction Process) [Ni₂(L³)₂] 115
Fig. 55 Cyclic Voltammogram of (Reduction Process) [Ni₂(L⁴)₂] 116
Fig. 56 Cyclic Voltammogram of (Oxidation Process) [Ni₂(L¹)₂] 117
Fig. 57 Cyclic Voltammogram of (Oxidation Process) [Ni₂(L²)₂] 117
Fig. 58 Cyclic Voltammogram of (Oxidation Process) [Ni₂(L³)₂] 118
Fig. 59 Cyclic Voltammogram of (Oxidation Process) [Ni₂(L⁴)₂] 118
Fig. 60 TG / DTA curves of [Ni₂(L¹)₂] 120
Fig. 61 TG / DTA curves of [Ni₂(L²)₂] 121
Fig. 62 Proposed structures of nickel(II) complexes. 122
Fig. 63 IR Spectra of [(VO)₂(L¹)₂] 126
Fig. 64 IR Spectra of [(VO)₂(L²)₂] 127
Fig. 65 IR Spectra of [(VO)₂(L³)₂] 127
Fig. 66 IR Spectra of [(VO)₂(L⁴)₂] 128
Fig. 67 IR Spectra of [(VO)₂(L⁵)₂] 128
Fig. 68 Electronic Spectra of [(VO)₂(L¹)₂] 130
Fig. 69 Electronic Spectra of \([(\text{VO})_2(L^3)_2]\)

Fig. 70 Electronic Spectra of \([(\text{VO})_2(L^3)_2]\)

Fig. 71 Electronic Spectra of \([(\text{VO})_2(L^4)_2]\)

Fig. 72 Electronic Spectra of \([(\text{VO})_2(L^5)_2]\)

Fig. 73 Cyclic Voltammogram of (Reduction Process) \([(\text{VO})_2(L^1)_2]\)

Fig. 74 Cyclic Voltammogram of (Reduction Process) \([(\text{VO})_2(L^2)_2]\)

Fig. 75 Cyclic Voltammogram of (Reduction Process) \([(\text{VO})_2(L^3)_2]\)

Fig. 76 Cyclic Voltammogram of (Reduction Process) \([(\text{VO})_2(L^4)_2]\)

Fig. 77 Cyclic Voltammogram of (Oxidation Process) \([(\text{VO})_2(L^1)_2]\)

Fig. 78 Cyclic Voltammogram of (Oxidation Process) \([(\text{VO})_2(L^2)_2]\)

Fig. 79 Cyclic Voltammogram of (Oxidation Process) \([(\text{VO})_2(L^3)_2]\)

Fig. 80 Cyclic Voltammogram of (Oxidation Process) \([(\text{VO})_2(L^4)_2]\)

Fig. 81 TG / DTA Curves of \([(\text{VO})_2(L^1)_2]\)

Fig. 82 TG / DTA Curves of \([(\text{VO})_2(L^2)_2]\)

Fig. 83 EPR Spectra of \([(\text{VO})_2(L^1)_2]\)

Fig. 84 EPR Spectra of \([(\text{VO})_2(L^5)_2]\)

Fig. 85 Proposed structures of the oxovanadium(IV) complexes.

Fig. 86 IR Spectra of \([\text{Co}_2(L^1)_2]\)

Fig. 87 IR Spectra of \([\text{Co}_2(L^2)_2]\)

Fig. 88 IR Spectra of \([\text{Co}_2(L^3)_2]\)

Fig. 89 IR Spectra of \([\text{Co}_2(L^4)_2]\)

Fig. 90 IR Spectra of \([\text{Co}_2(L^5)_2]\)

Fig. 91 Electronic Spectra of \([\text{Co}_2(L^1)_2]\)
Fig. 92 Electronic Spectra of $[\text{Co}_2(L^2)_2]$
Fig. 93 Electronic Spectra of $[\text{Co}_2(L^3)_2]$
Fig. 94 Electronic Spectra of $[\text{Co}_2(L^4)_2]$
Fig. 95 Electronic Spectra of $[\text{Co}_2(L^5)_2]$
Fig. 96 TG / DTA curves of $[\text{Co}_2(L^1)_2]$
Fig. 97 TG / DTA curves of $[\text{Co}_2(L^2)_2]$
Fig. 98 Proposed structures of the cobalt(II) complexes
Fig. 99 Antibacterial activity of the Schiff base ligand, H_2L^1 and its Cu(II), Ni(II), VO(II) and Co(II) complexes against Gram – positive bacteria
Fig. 100 Antibacterial activity of the Schiff base ligand, H_2L^1 and its Cu(II), Ni(II), VO(II) and Co(II) complexes against Gram – negative bacteria
Fig. 101 Antifungal activity of the Schiff base ligand, H_2L^1 and its Cu(II), Ni(II), VO(II) and Co(II) complexes
Fig. 102 Antibacterial activity of the Schiff base ligand, H_2L^2 and its Cu(II), Ni(II), VO(II) and Co(II) complexes against Gram – positive bacteria
Fig. 103 Antibacterial activity of the Schiff base ligand, H_2L^2 and its Cu(II), Ni(II), VO(II) and Co(II) complexes against Gram – negative bacteria
Fig. 104 Antifungal activity of the Schiff base ligand, H$_2$L2 and its Cu(II), Ni(II), VO(II) and Co(II) complexes

Fig. 105 Antibacterial activity of the Schiff base ligand, H$_2$L3 and its Cu(II), Ni(II), VO(II) and Co(II) complexes against Gram – positive bacteria

Fig. 106 Antibacterial activity of the Schiff base ligand, H$_2$L3 and its Cu(II), Ni(II), VO(II) and Co(II) complexes against Gram – negative bacteria

Fig. 107 Antifungal activity of the Schiff base ligand, H$_2$L3 and its Cu(II), Ni(II), VO(II) and Co(II) complexes
LIST OF TABLES

Table 1 Synthesis Data of Binucleating Schiff Base Ligands 45
Table 2 Synthesis Data for Copper(II) complexes 47
Table 3 Synthesis Data for Nickel(II) complexes 48
Table 4 Synthesis Data for Oxovanadium(IV) complexes 50
Table 5 Synthesis Data for Cobalt(II) complexes 52
Table 6 Elemental Percentage Composition Data 63
Table 7 Selective Group Frequencies in the IR spectral data of Schiff base Ligands (cm\(^{-1}\)) 64
Table 8 Electronic Spectral Data of the Ligands 69
Table 9 NMR Spectral Data of Ligands 72
Table 10 Analytical Data of Binuclear Copper(II) Schiff Base Complexes 80
Table 11 Infrared Spectral Data of Copper(II) Complexes 81
Table 12 Electronic Spectral Data of Binuclear Copper(II) Complexes 85
Table 13 Electrochemical Data of Binuclear Copper(II) Schiff Base Complexes (Reduction at cathodic potential) 89
Table 14 EPR Spectral Data of the Binuclear Copper(II) Complexes 96
Table 15 Magnetic Susceptibility Data of [Cu\(_2\)(L\(^1\))\(_2\)] 101
Table 16 Analytical Data of Binuclear Nickel(II) Complexes 105
Table 17 Infrared Spectral Data of Nickel(II) Complexes 106
Table 18 Electronic Spectral Data of Binuclear Nickel(II) Complexes 110
Table 19 Cyclic Voltammetric Data of Nickel(II) Schiff Base Complexes (Reduction at cathodic potential) 114
Table 20 Electrochemical Data of the Binuclear Nickel(II) complexes

(Oxidation at Anodic Potential) 116

Table 21 Analytical Data of Oxovanadium(IV) Complexes 124

Table 22 Infrared Spectral Data of Oxovanadium(IV) Complexes 126

Table 23 Electronic Spectral Data and magnetic moment of Oxovanadium(IV) Complexes 130

Table 24 Cyclic Voltammetric Data for Oxovanadium(IV) Complexes (Reduction at cathodic potential) 133

Table 25 Electrochemical Data of the Binuclear Oxovanadium(IV) complexes (Oxidation at Anodic Potential) 136

Table 26 EPR Spectral Data for Oxovanadium(IV) Complexes 142

Table 27 Analytical Data of Binuclear Cobalt(II) Complexes 147

Table 28 Infrared Spectral Data of Cobalt(II) Complexes 148

Table 29 Electronic Spectral Data and Magnetic Moment of Cobalt(II) Complexes 152

Table 30 Antimicrobial activity of the Schiff base ligand, H$_2$L1 and its Cu(II), Ni(II), VO(II) and Co(II) complexes 163

Table 31 Antimicrobial activity of the Schiff base ligand, H$_2$L2 and its Cu(II), Ni(II), VO(II) and Co(II) complexes 163

Table 32 Antimicrobial activity of the Schiff base ligand, H$_2$L3 and its Cu(II), Ni(II), VO(II) and Co(II) complexes 164