1.6. **FUZZY QUEUES**
- 1.6.1. Machine Repair Problem
- 1.6.2. Erlang’s Loss Model
- 1.6.3. Tandem Queues
- 1.6.4. N Policy Queues with Infinite Capacity
- 1.6.5. \(M^a/M(a,b)/1 \) Queue with Random Break Downs
- 1.6.6. Queuing System with Removable and Reliable Server
- 1.6.7. N policy \(M/E_k/1 \) Queuing Model with Removable Service Station
- 1.6.8. \(M/D/n \) Queue

1.7. **NOTATIONS USED**

1.8. **LITERATURE REVIEW**

1.9. **MOTIVATION AND SCOPE OF THE THESIS**

1.10. **ORGANISATION OF THE THESIS**

CHAPTER – II
MACHINE REPAIR PROBLEM UNDER UNCERTAIN ENVIRONMENT
- 2.1. **INTRODUCTION**
- 2.2. **FUZZY MACHINE REPAIR MODEL**
- 2.3. **MIXED INTEGER PROGRAMMING APPROACH**
- 2.4. **NUMERICAL EXAMPLE**

CHAPTER – III
ANALYSIS OF FUZZY ERLANG’S LOSS QUEUING MODEL AND FUZZY TANDEM QUEUES
SECTION 1
- 3.1. **INTRODUCTION**
 - 3.1.2. \(M/M/S/S \) : Loss Model System
 - 3.1.3. System with Limited Waiting Time
 - 3.1.4. Expected Number of Busy Channels
 - 3.1.5. \(FM/FM/S/S \) : Loss Model System
3.1.6. Solution Procedure 57
3.1.7. Numerical Example 59

SECTION 2
3.2. INTRODUCTION 62
3.2.1. Fuzzy Queuing Network with Overtaking 64
3.2.2. Mathematical Programming Approach 66
3.2.3. Numerical Example 71

CHAPTER – IV
FUZZY N POLICY QUEUES WITH INFINITE CAPACITY
AND N POLICY M/E_k/1 QUEUE WITH REMOVABLE
SERVICE STATION 74

SECTION 1
4.1. INTRODUCTION 74
4.1.1. Literature Review for Fuzzy Queues 75
4.1.2. N-Policy M/M/1/ Queue 77
4.1.3. Fuzzy N-Policy Queue 78
4.1.4. Solution Methodology 79
4.1.5. Numerical Illustration 82

SECTION 2
4.2. INTRODUCTION 84
4.2.1. Model Description 86
4.2.2. Parametric Non-Linear Programming Approach 88
4.2.3. Numerical Example 93

CHAPTER – V
ANALYSIS OF A FUZZY QUEUING SYSTEM WITH A
REMOVABLE AND NON-RELIABLE SERVER AND
M^x/M(a,b)/1 QUEUE MODELS WITH RANDOM BREAKDOWNS 97

SECTION 1
5.1. INTRODUCTION 97
5.1.1. Model Description 99
5.1.2. Solution Procedure 102
5.1.3. Numerical Example 106

SECTION 2
5.2. INTRODUCTION 108
 5.2.1. Model Description 110
 5.2.2. Steady State Analysis of System Size 111
 5.2.3. Some Particular Cases 114
 5.2.4. Numerical Example 117

CHAPTER – VI
APPLICATION OF FUZZY QUEUING MODEL IN REAL LIFE SITUATION 120

SECTION 1
6.1. INTRODUCTION 120
 6.1.1. Fuzzy Queuing Model 122
 6.1.2. Solution Procedure 123
 6.1.3. Numerical Example 124

SECTION 2
6.2. INTRODUCTION 126
 6.2.1. A Fuzzy Queuing Approach to Child Care 129
 6.2.2. Numerical Example - 1 131
 6.2.2. Numerical Example - 2 133

CONCLUSION 135
PUBLICATIONS 137
CONFERENCE ATTENDED / ORAL PRESENTATION 139
REFERENCES 140
ANNEXURE