LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sympathetic noradrenergic innervation of spleen in young and old rats</td>
<td>3</td>
</tr>
<tr>
<td>3.1</td>
<td>Con A-induced proliferation of splenic lymphocytes</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Effects of NFJ, NWS, and NSL on cellular antioxidative Status</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Effects of NFJ, NWS, and NSL on the extent of lipid peroxidation</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>An overview of the results depicting immunomodulatory and antioxidative effects of Noni fruit juices on splenic lymphocytes in vitro</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Con A-induced T lymphocyte proliferation of splenic lymphocytes</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Con A-induced IL-2 and IFN-γ production of splenic lymphocytes</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Antioxidant status of splenic lymphocytes from young, early middle-aged and old rats treated with NSL and NWS</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>Expression of p-ERK/ Total ERK, p-CREB/Total CREB and p-Akt/Total Akt in splenic lymphocytes from young, early middle-aged and old rats treated with NSL and NWS</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>In vitro incubation of splenic lymphocytes with noni seedless (NSL) fruit juices on the expression of NF-κB (p50)</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>In vitro incubation of splenic lymphocytes with noni fruit juices with seeds (NWS) on the expression of NF-κB (p50)</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>Docking studies using ERK and damnacanthal</td>
<td>47</td>
</tr>
</tbody>
</table>
4.8 Docking studies using ERK and ursolic acid
4.9 Docking studies using ERK and myricetin
4.10 An overview of the results depicting immunomodulatory effects of Noni fruit juices with or without seeds on splenic lymphocytes *in vitro*

5.1 Body weight of old F344 rats after 60 days of oral administration of NFJ
5.2 Con A-induced proliferation of splenocytes by *in vitro* (a) and *in vivo* (b) treatment of NFJ
5.3 Con A-induced production of cytokines [IL-2, IFN-γ, IL-6, and TNF-α] by splenocytes after *in vitro* (A, C, E and G) and *in vivo* (B, D, F and H) treatment with NFJ in young and old F344 rats
5.4 Western immunoblots (A) probed with antibodies against p-TH, NGF, p-mTOR, p-IκB-α, p-NF-κB (p50) and p-NF-κB (p65) expression in the spleen isolated from old rats after 60 days of oral administration of NFJ
5.5 Expression of p-ERK/Total ERK, p-CREB/Total CREB and p-Akt/Total Akt in splenocytes after *in vitro* (A, C and E) and *in vivo* (B, D and F) treatment with NFJ in young and old F344 rats
5.6 The extent of lipid peroxidation in splenocytes after *in vitro* (A) and *in vivo* (B) treatment with NFJ in young and old F344 rats
5.7 Protein carbonyl formation in spleen after 60 days of oral administration of NFJ in old F344 rats
5.8 Nitric oxide production (NO) as measured using the Greiss reagent system in spleen after 60 days of oral administration of NFJ in old F344 rats
5.9 An overview of the results depicting the probable intracellular pathways involved in mediating immunomodulatory and anti-inflammatory effects
of Noni (*Morinda citrifolia*) fruit juice (NFJ) in splenic lymphocytes of F344 rats

6.1 Serum testosterone (A) and corticosterone (B) levels as measured by chemiluminescence immunoassay in old F344 rats treated with NFJ for a period of 60 days

6.2 Amyloid precursor protein (APP) level measured by ELISA in the brain areas [frontal cortex (A), striatum (B), medial basal hypothalamus (C), and hippocampus (D)] after 60 days of oral administration of NFJ in old F344 rats

6.3 Brain-derive growth factor (BDNF) levels measured by ELISA in the brain areas [frontal cortex (A), striatum (B), medial basal hypothalamus (C), and hippocampus (D)] after 60 days of oral administration of NFJ in old F344 rats

6.4 Insulin-like growth factor-1 (IGF-1) level measured by ELISA in the brain areas [frontal cortex (A), striatum (B), medial basal hypothalamus (C), and hippocampus (D)] after 60 days of oral administration of NFJ in old F344 rats

6.5 The expression of p-ERK/Total ERK, p-CREB/Total CREB, and p-Akt/Total Akt using ELISA in frontal cortex after 60 days of oral administration of NFJ in old F344 rats

6.6 The expression of p-ERK/Total ERK, p-CREB/Total CREB, and p-Akt/Total Akt using ELISA in striatum after 60 days of oral administration of NFJ in old F344 rats

6.7 The expression of p-ERK/Total ERK, p-CREB/Total CREB, and p-Akt/Total Akt using ELISA in medial basal hypothalamus after 60 days of oral administration
of NFJ in old F344 rats

6.8 The expression of p-ERK/Total ERK, p-CREB/Total CREB, and p-Akt/Total Akt using ELISA in hippocampus after 60 days of oral administration of NFJ in old F344 rats

6.9 Nitric oxide production in the brain areas [frontal cortex (A), striatum (B), medial basal hypothalamus (C), and hippocampus (D)] after 60 days of oral administration of NFJ in old F344 rats

6.10 Butyryl cholinesterase (BChE) activity in serum isolated from old rats after 60 days of oral administration of NFJ old F344 rats

6.11 Total cholinesterase (TChE) activity in brain areas [frontal cortex (A), striatum (B), medial basal hypothalamus (C), and hippocampus (D)] isolated from old rats after 60 days of oral administration of NFJ in old F344 rats

6.12 An overview of the results depicting the probable intracellular pathways involved in mediating immunomodulatory and neuroprotective effects of Noni (Morinda citrifolia) fruit juice (NFJ) in in various brain areas (Frontal cortex, Striatum, Medial basal hypothalamus (MBH) and Hippocampus) of old F344 rats

7. An overview of the results depicting the probable intracellular pathways involved in mediating immunomodulatory and neuroprotective effects of Noni fruit juice in spleen and brain areas of F344 rats

A1.1 Superoxide dismutase (SOD) activity in brain areas [frontal cortex (A), striatum (B), medial basal hypothalamus (C), and hippocampus (D)] isolated from old rats after 60 days of oral administration of NFJ
A1.2 Catalase (CAT) activity in brain areas [frontal cortex (A), striatum (B), medial basal hypothalamus (C), and hippocampus (D)] isolated from old rats after 60 days of oral administration of NFJ

A1.3 Glutathione Peroxidase (GPx) activity in brain areas [frontal cortex (A), striatum (B), medial basal hypothalamus (C), and hippocampus (D)] isolated from old rats after 60 days of oral administration of NFJ

A1.4 Glutathione-s-transferase (GST) activity in brain areas [frontal cortex (A), striatum (B), medial basal hypothalamus (C), and hippocampus (D)] isolated from old rats after 60 days of oral administration of NFJ

A1.5 The extent of lipid peroxidation in brain areas [frontal cortex (A), striatum (B), medial basal hypothalamus (C), and hippocampus (D)] isolated from old rats after 60 days of oral administration of NFJ