Contents

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
</tr>
<tr>
<td>Abstract</td>
</tr>
<tr>
<td>List of Figures</td>
</tr>
<tr>
<td>List of Symbols</td>
</tr>
<tr>
<td>List of Tables</td>
</tr>
<tr>
<td>List of Publications</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
</tr>
<tr>
<td>2.0 LITERATURE REVIEW</td>
</tr>
<tr>
<td>2.1 Natural polymer</td>
</tr>
<tr>
<td>2.1.1 Natural polymer: Mimosa pudica Linn.</td>
</tr>
<tr>
<td>2.1.2 High-energy photon irradiation on polymers</td>
</tr>
<tr>
<td>2.2 Nono phosphor</td>
</tr>
<tr>
<td>2.2.1 Quantum phosphor for X-ray detection</td>
</tr>
<tr>
<td>3.0 SMART MATERIALS: NATURAL CONDUCTING POLYMERS AND NANO PHOSPHORS</td>
</tr>
<tr>
<td>3.1 Natural Conducting Polymers: MP microfibers</td>
</tr>
<tr>
<td>3.1.1 Polymers</td>
</tr>
<tr>
<td>3.1.2 Classification of Polymers</td>
</tr>
<tr>
<td>3.1.3 Properties of Polymers</td>
</tr>
<tr>
<td>3.1.4 Conducting Polymers</td>
</tr>
</tbody>
</table>
3.1.5 Mimosa pudica plant as a natural Conducting Polymer
3.2 Nano phosphors: CdSe-CdS core shell QDs and rods
3.2.1 Semi-conductors in nano-crystal
3.2.2 Core-shell QDs
3.2.3 Types of CdSe-CdS Core-shell QDs

4.0 EXPERIMENTAL TECHNIQUES
4.1 Fiber Extraction technique
4.2 Characterization of virgin MP micro fiber
4.2.1 X-Ray Diffraction (XRD)
4.2.2 Scanning Electron Microscopy (SEM)
4.2.3 I-V Characteristics
4.3 Irradiation of fiber through linear accelerator (LINAC)
4.4 Characterization of irradiated Micro-fiber
4.4.1 X-Ray Diffraction (XRD)
4.4.2 Scanning Electron Microscopy (SEM)
4.4.3 I-V Characteristics
4.5 Synthesis of nano-phosphors
4.5.1 CdSe-CdS core shell QDs
4.5.2 CdSe-CdS dot-in-rods
4.5.3 Seeded CdSe-CdS QDs rod
4.6 Characterization nano-phosphors
4.6.1 Transmission Electron Microscopy (TEM)
4.6.2 Photoluminescence (PL) Spectroscopy
4.7 Coating of nano-material on the surface of MP fiber and fabrication of sensing plates (Thin-film)
4.8 Characterization of sensing plate (Thin-film) for sensing application
4.8.1 X-Ray Diffraction (XRD)
4.8.2 Scanning Electron Microscopy (SEM)
4.8.3 I-V Characteristics
4.9 Sensing plates (Thin-film) as a window-less X-ray detector 51
4.10 Photo-sensing plate with incidence of X-rays 51
4.10.1 I-V characteristics 51

5.0 RESULTS AND ANALYSIS 54-122
5.1 Extraction of polymer fiber from plant 55
5.2 Structural investigation of *Mimosa pudica Linn* fiber (virgin micro fiber) 55
5.3 Interaction of fiber with High-energy X-ray radiation to confirm the stability of the fiber 65
5.3.1 X-ray diffraction 67
5.3.2 SEM 70
5.3.3 I-V Characteristics 72
5.4 Synthesis of nano-phosphors (QDs & Q-Rods) 77
5.4.1 Synthesis of the CdSe-CdS core shell QDs 77
5.4.2 Synthesis of the CdSe-CdS dot-in-rods 78
5.4.3 Synthesis of the Seeded CdSe-CdS QDs rod 78
5.5 Characterization nano-phosphors 79
5.5.1 Transmission Electron Microscopy 79
5.5.2 Optical aberption 83
5.5.3 Photoluminescence 83
5.6 Coating of nano-material on the surface of MP fiber and fabrication of sensing plates (Thin-film) 88
5.7 Characterization of sensing plate (Thin-film) for sensing application 88
5.7.1 X-Ray Diffraction 88
5.7.2 Scanning Electron Microscopy 94
5.7.3 I-V characteristics of single fiber 105
5.8 Sensing plates (Thin-film) as a window-less X-ray detector 108
5.8.1 Principle of X-ray photo-detector 109
5.8.2 Photo-sensing plate with incidence of X-rays 111
5.8.3 Experimental setup for photo-detecting measurement 112