GENERAL REMARKS

1. The figure (spectra) numbers, chart numbers, scheme numbers and reference number etc. given in each chapter refer to that particular chapter only. The references and figures are given at the end of each chapter.

2. The temperatures are given in centigrade scale.

3. All the solvents were distilled before use. Petroleum-ether refers to the fraction boiling in the range 60-80°C.

4. Unless otherwise mentioned all the column chromatographic separations were carried out using the TLC grade silicagel using the dry column technique. The silica gel used had a particle size range of 200-300 mesh. The silica-gel was activated at 300°C for five hours before using for chromatography.

5. The thin layer chromatographic (TLC) and preparative TLC plates were prepared by spreading an aqueous suspension of silica-gel (200-300 mesh, containing 13% CaSO₄ as binder) uniformly over glass plates using an applicator. Layer thickness: TLC plates: 0.2 mm; preparative TLC: 1.1.5 mm. After initial drying at room temp. the plates were activated at 100°C for one hour before use.

6. Unless otherwise mentioned, all TLC and preparative TLC were run using mixtures of acetone and pet.ether as solvent. The percentage composition is given in parenthesis. (For example, eluent: 40:60 means eluent:acetone-pet.ether 40:60).
7. After development, the spots on TLC plates were visualized by exposing them to iodine vapours and/or by spraying with a mixture of H_2SO_4-HNO_3 (1:1) followed by charring in an oven. In case of preparative TLC plates the bands of compounds (after developing) were visualised by spraying a dilute solution of iodine in $CHCl_3$ to the sides (after covering the major central portion with a glass plate).

8. All the melting points reported are uncorrected.

9. Optical rotations were measured in $CHCl_3$ solution using sodium light (5893) as the source on a Jasco Dip 181 digital polarimeter.

10. The UV spectra were recorded in ethanol solution on a Carl Zeiss 'Specord' UV-visible spectrophotometer.

11. Unless otherwise stated, the IR spectra of compounds were recorded in nujol mull with sodium chloride optics. The IR spectra were recorded on Perkin-Elmer 599B and Perkin-Elmer "Infracord" 137B model.

12. Mass spectra were recorded on a CEC-2-110B double focussing spectrometer using direct inlet system at 70 eV.

13. All the 1H NMR and ^{13}C-NMR spectra were recorded in CDCl$_3$ solution (10%) using TMS as internal standard. 1H NMR chemical shifts are given in δ-scale. Most of the 1H NMR spectra were recorded at 90 MHz on a Bruker WH-90 (spectrospin) spectrometer. 60 MHz 1H-NMR spectra were recorded on a Varian T-60 spectrometer.
14. The 13C-NMR spectra were recorded at 22.63 MHz on a Bruker WH-90 spectrometer. All 13C-NMR spectra were recorded twice as (1) proton noise decoupled or single line spectrum and (2) single frequency offresonance decoupled (SFOD) spectrum.