Acknowledgment i
Abstract iii
List of figures x
List of tables xxvi
List of symbols xxvii
List of abbreviations xxxi

Chapter -1 Introduction 1

1.1 Variable Speed Drive 1
1.2 Classification of Variable Speed Drives 2
 1.2.1 DC Motor Drives 3
 1.2.2 AC Motor Drives 3
 1.2.2.1 Induction Motor Drives 4
 1.2.2.1.1 Squirrel-cage Induction Motor Drives 4
 1.2.2.1.2 Slip-ring Induction Motor Drives 5
 1.2.2.2 Synchronous Motor Drives 6
1.3 Control Strategies for Squirrel-cage Induction Motor 6
 1.3.1 Volts/Hz (V/f) Control of Induction Motor 7
 1.3.2 Vector Control of Induction Motor 8
 1.3.2.1 Direct Vector Control of Induction Motor 10
 1.3.2.2 Indirect Vector Control of Induction Motor 10
 1.3.3 Sensorless Vector Control of Induction Motor 11
 1.3.4 Direct Torque Control of Induction Motor 12
1.4 Literature Review and State of the Art Assessment 13
 1.4.1 Introduction 13
 1.4.2 Control Techniques for Induction Motor Drives 14
1.4.2.1 Constant Volts per Hertz Control
1.4.2.2 Vector Control
1.4.2.3 Sensorless Vector Control
1.4.2.4 State of the Art DTC of Induction Motor Drives

1.5 Summary

Chapter – 2 Statement of the Problem
2.1 Introduction
2.2 Statement of the Problem
2.3 Main Contributions of the Thesis
2.4 Organization of the Thesis
2.5 Summary

Chapter – 3 Direct Torque Control of Induction Motor
3.1 Introduction
3.2 Direct Torque Control of Induction Motor Drive
3.2.1 Principle of DTC
3.2.2 Conventional DTC Block Diagram
3.2.2.1 Optimum Switching Vector Selection
3.2.2.2 Adaptive Motor Model
3.2.3 Results and Discussions
3.2.4 Summary
3.3 Space Vector Pulsewidth Modulation Algorithm Based DTC
3.3.1 SVPWM Algorithm
3.3.2 Proposed SVPWM Based DTC
3.3.3 Results and Discussions
3.3.4 Summary
3.4 Three-Level NPC Inverter Based DTC Drive
3.4.1 Diode clamped Three Level Inverter
3.4.2 Principle of Operation
3.4.3 Simplified SVPWM Algorithm for 3-Level NPC Inverter
3.4.3.1 Space Vector’s Plot
3.4.3.2 Simplified Approach for SVPWM Algorithm
3.4.4 Simplified SVPWM algorithm based 3-Level Inverter Fed DTC Drive.
3.4.5 Results and Discussions
3.4.6 Summary

Chapter – 4 Simplified Generalized PWM Algorithm for Multilevel Inverter Fed DTC-IM Drive
4.1 Introduction
4.2 Simplified SVPWM Algorithm for 2-level Inverter
4.3 Topologies of Diode-Clamped Multilevel Inverters
4.4 Proposed Generalised PWM Algorithm for n-Level Inverter
4.5 Results and Discussions
4.6 Summary

Chapter 5 Decoupled PWM Algorithm Based Open-End Winding Induction Motor Drive
5.1 Introduction
5.2 Open-End Winding Induction Motor Drive
5.3 Proposed Decoupled PWM Algorithm
5.4 Results and Discussions
5.5 Summary

Chapter 6 Nearest Sub-Hexagonal Center PWM Algorithm Based DTC-IM Drive
6.1 Introduction
6.2 Proposed NSHCPWM Algorithm
6.3 Results and Discussions
6.4 Summary

Chapter 7 Reduced Common Mode Voltage PWM Algorithms for Direct Torque Controlled Induction Motor Drives
7.1 Introduction
7.2 Common Mode Voltage
7.3 Reduced Common Mode Voltage PWM Algorithmes
7.3.1 Calculation of Switching Times for AZSPWM Algorithms
7.3.2 Generation of Pulse Pattern for NSPWM Algorithm 206

7.3.2.1 Conventional Approach 206

7.3.2.2 Proposed Approach 207

7.4 Proposed RCMVPWM Algorithms Based Direct Torque

Controlled Drive 211

7.5 Simulation Results and Discussions 214

7.6 Summary 245

Chapter -8 Conclusions 246

8.1 Conclusions 246

8.2 Suggestions for Future Work 248

References 249

Appendix – I Simulation parameters and Specifications of the Induction Motor 264

Appendix – II Published /Accepted Papers in Support of the Thesis 265