List of Figures

1.1 Solar system abundances at its birth. Number abundances are normalized to
the number of silicon atoms (Si = 10^6) from Lodders[7] (2003). 3
1.2 Nuclear landscape 4
1.3 Binary system 5
1.4 X-ray burster 6
1.5 Elemental solar system s- and r-process abundances[21] 15
2.1 Neutron dripline according to the present calculation. 25
2.2 Neutron dripline for even N-nuclei predicted by the present formula (Pres),
FRDM and DZ formula. 26
2.3 The two neutron separation energy S2n and the r-process path. 28
2.4 Lightest isotopes for which the two neutron separation energy is above 4
MeV. See text for details. 29
2.5 The abundance pattern from a weighted sum of three r-process components.
See text for details. 30
3.1 Calculated charge density in 62Ni and 66Zn (solid lines) compared with ex-
perimental measurements (filled circles) from Wohlfahrt et al.[16] 39
3.2 Comparison of charge density obtained from Fourier-Bessel analysis of ex-
perimental electron scattering data[17] (solid line) and calculated in the present
work (dashed line) for 76Ge, 88Sr, 90Zr and 94Mo respectively. 40
3.3 S-factors extracted from experimental measurements compared with theory
for 60,62Ni and 63,65Cu. Solid and dashed lines indicate respectively the re-
results of the HF+BCS and HFB approaches for level density and E1 gamma
strength. E_{cm} is centre of mass frame energy. 43
3.4 S-factors extracted from experimental measurements compared with theory for 64,66,67,68Zn. See caption of figure 3.3 for details. .. 43
3.5 S-factors extracted from experimental measurements compared with theory for 70Ge and 74,76,77Se. See caption of figure 3.3 for details. .. 44
3.6 Experimental and calculated S-factors for (p, γ) reactions in 84Sr and 86Sr targets. ... 44
3.7 Experimental and calculated S-factors for (p, γ) reactions in 87Sr and 88Sr targets. ... 44
3.8 Experimental and calculated S-factors for 75As(p, n), 76Ge(p, n) and 85Rb(p, n) reactions respectively. .. 45
3.9 Experimental and calculated cross sections for elastic proton scattering in Zr isotopes. For $A = 90$, 91 and 92, the proton energies are 9.7 MeV, 14.8 MeV, and 14.25 MeV, respectively. The cross sections for 91,92Zr have been multiplied by a factor of 100 and 1000, respectively. .. 46
3.10 Experimental and calculated cross sections for elastic proton scattering in Mo isotopes at 15 MeV proton energy. The cross sections for $A = 92$, 94, and 96 have been multiplied by factors of 10, 100, and 1000, respectively. .. 47
3.11 Experimental and calculated S-factors for (p, γ) reactions in 89Y and 90Zr, respectively. The solid (dashed) line indicates calculated results for 89Y(96Zr). .. 47
3.12 Experimental and calculated S-factors for 92,94Mo(p, γ) reactions. Results for 94Mo have been multiplied by 10. The solid (dashed) line indicates calculated results for 92Mo(94Mo). .. 48
3.13 Experimental and calculated S-factors for 95,98Mo(p, γ) reactions. Results for 98Mo have been multiplied by 10. The solid (dashed) line indicates calculated results for 95Mo(98Mo). .. 48
3.14 Experimental and calculated S-factors for 96,98,99Ru(p, γ) reactions. Results for 98,99Ru have been multiplied by 10 and 100, respectively. The solid, dashed and dotted lines indicate results for 96,98,99Ru, respectively. 49
3.15 Experimental and calculated S-factors for the 93Nb(p, n) reaction. 49
3.16 Comparison of rates (cm3 mol$^{-1}$ sec$^{-1}$) for (γ, p) reactions from present calculation (solid line) and NON-SMOKER[35] calculation (dotted line) for (a) 92Mo and (b) 96Ru respectively. .. 50
4.1 Block diagram of rp-network .. 59
4.2 Effective half life values of 64Ge as a function of temperature. The solid line represents the results of our calculation while the dashed lines mark the two extremes for the errors in the Q-values of the reactions involved. The dash dotted line shows the results obtained using the rates from reference[8]. 61
4.3 Effective half life values of ^{68}Se as a function of temperature. See caption of figure 4.2 for details. ... 62
4.4 Effective half life values of ^{72}Kr as a function of temperature. See caption of figure 4.2 for details. ... 62
4.5 Effective half life values of ^{76}Sr as a function of temperature. See caption of figure 4.2 for details. ... 62
4.6 Effective half life values of ^{64}Ge as a function of temperature for different Q-values of $^{64}\text{Ge}(p, \gamma)$ reaction. ... 63
4.7 Densities above which the various waiting points are found to be to be effectively bridged at different temperatures. The waiting points are ^{64}Ge (continuous curve), ^{68}Se (dotted curve), ^{72}Kr (dash-dotted curve) and ^{76}Sr (dashed curve). ... 65
4.8 Differences between experimental[2] and calculated mass values in MeV near the $N = Z$ line in mass 60-80 region. .. 66
4.9 Evolution of abundance of mass at the waiting points in explosive proton-rich astrophysical environments. See text for details. 67
4.10 r_p-process path for 1.2 GK ... 69
4.11 r_p-process path for 1.5 GK ... 70
4.12 SnSbTe cycle from Schatz et al.[16] .. 71
4.13 Proton capture rates (cm3 mol$^{-1}$ sec$^{-1}$) vs temperature(GK). See text for details. ... 72
4.14 Relative abundances vs mass number for different temperature-density profiles of various X-ray burster after 100 seconds. (Insets) Model-II: Curve for temperature in GK vs time in seconds of the X-ray burst from Schatz et al.[16]; Model-III and IV: Temperature T_9 in GK (left) and density ρ in gram/cm3 (right) with time in seconds from Illiadis[7]. See text for details. 73
4.15 Abundances as a function of the Q-value of the reaction $^{61}\text{Ga}(p, \gamma)$ for a constant temperature 1.5 GK. The abundances have been multiplied by 5 and 50 in the second and the third frames, respectively. 75
4.16 Abundances as a function of the Q-value of the reaction $^{65}\text{As}(p, \gamma)$ for a constant temperature 1.5 GK. The abundances have been multiplied by 5 and 50 in the second and the third frames, respectively. 76
4.17 Major abundances as a function of the Q-value of the reaction $^{64}\text{Ge}(p, \gamma)$ for a constant temperature 1.5 GK. ... 77
4.18 Ratio of change in final abundance for $Q_0 \pm \sigma$ values of the $^{65}\text{As}(p, \gamma)$ reaction. See text for details. ... 78